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Abstract. Dispersive PDEs such as nonlinear Schrödinger equations (NLS) have been studied at
length using the tools of classical and harmonic analysis. However, periodic NLS for low regularity
have been more difficult to investigate using deterministic methods. Instead, probabilistic tools
can be used to obtain various well-posedness results. In this expository paper based on the lecture
notes of Oh ’17 and building toward the results of Bourgain ’94, we treat the construction of Gibbs
measures on Sobolev spaces Hσ(T), which enable the use of probabilistic tools for studying periodic
NLS in the low regularity regime.

1. Introduction and Notation

1.1. Introduction. The main object of our study will be the nonlinear Schrödinger equation on
the d-dimensional torus Td = (R/2πZ)d,{

i∂tu+∆u = λ|u|p−1u

u(t0, x) = u0(x).

Here, the desired solution is the scalar field u : I × Td → C for some time interval I ⊂ R. The
initial data u0 lies in a Sobolev space Hs

x(Td), the exponent 1 < p < ∞ denotes the power of the
nonlinearity, and the sign λ ∈ {−1, 0, 1} denotes the nature of the nonlinearity (focusing, absent,
or defocusing, respectively).

There is extensive theory surrounding local and global well-posedness for aperiodic NLS, i.e. those
with domain Rd rather than Td. For example, [Tao06, Proposition 3.8] gives us that the aperiodic
NLS is locally well-posed in Hs

x(Rd) for p > 1 an odd integer and s sufficiently large. Even in lower
regularity, [Tao06, Proposition 3.15] gives local well-posedness in L2

x(Rd) for certain choices of p.
Conservation laws can allow such local well-posedness results to be extended globally.

Some of these techniques can be applied to periodic NLS for high regularity and weak nonlinearity.
See, e.g., [Bou93, Section 4]. Unfortunately, it is not always possible to apply these deterministic
techniques to study low regularity well-posedness of NLS in the periodic setting. Instead, we turn
to probabilistic methods with the goal of proving almost sure well-posedness with respect to the
initial data. This will allow us to disregard a small set of initial data.

Of course, proving almost sure well-posedness requires defining a probability measure on a space
of functions on Td within which the initial data can lie. To that end, we begin with the goal of
defining a measure on Hσ

x (Td) for certain values of σ. The challenge of defining such a measure is
that Hσ

x (Td) is infinite-dimensional. Unlike the finite-dimensional case sometimes associated with
certain ordinary differential equations, we can no longer use the Lebesgue measure because it has
no infinite-dimensional version.
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As it happens, the most promising candidates for such measures are Gibbs measures that are
formally invariant under the flow of NLS. Roughly speaking, invariance means that the measure of
a set of solutions at a certain time is the same as the measure of the initial data that generated those
solutions. This is a helpful property because the measure can be interpreted as describing the long-
term behavior of solutions and because we can view the system as a dynamical system in which the
passage of time is a measure-preserving transformation. This gives us access to powerful recurrence
theorems such as those of Poincaré and Furstenberg. See [OQ13, p. 2] for applications.

We will begin with a finite-dimensional example in which we construct invariant Gibbs measures for
a Hamiltonian system of ODEs. Then, we formally describe an outline of the construction of Gibbs
measures for periodic NLS in one dimension. Finally, we proceed with a rigorous construction of
Gibbs measures and prove that they are nontrivial probability measures on Hσ

x (T) for sufficiently
small σ, at least in the defocusing case. The structure of this paper and most proofs are based on
those of [Oh17].

1.2. Notation. For f : Td → C, we define f̂ : Zd → C by

f̂(n) =
1

(2π)d

∫
Td

f(x)e−in·x dx.

For any n ∈ Zd, we write

|n| := ∥n∥2 =

 d∑
j=1

n2
j

 1
2

and

⟨n⟩ =
√
1 + |n|2.

We will write A ≲ B to denote A ≤ CB for some constant C ∈ (0,∞), B ≳ A to denote A ≲ B,
and A ≍ B to denote A ≲ B ≲ A.

2. Gibbs measures in finite dimension

Let us take a brief detour from our discussion of NLS in order to consider a finite-dimensional
system. Let H : R2n → R be a Hamiltonian with sufficient regularity and suppose that H(p, q) ≳
(|p|+ |q|)δ for some δ > 0.1 Then, Hamilton’s equations are

(2.1)


∂tpj =

∂H
∂qj

∂tqj = −∂H
∂pj

for j = 1, . . . , n.

Consider the vector field ∇ωH given by

∇ωH =

(
∂H
∂q1

, . . . ,
∂H
∂qn

,−∂H
∂p1

, . . . ,− ∂H
∂pn

)
,

which represents the flow generated by (2.1). A simple computation yields that

∇ · ∇ωH =
n∑

j=1

[
∂

∂pj

∂H
∂qj

+
∂

∂qj

(
−∂H
∂pj

)]
= 0.

1This coercivity condition ensures that (2.1) is globally well-posed and e−βH is integrable.
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Then, Liouville’s theorem gives us that the Lebesgue measure

dp dq =
n∏

j=1

dpj dqj

is invariant under ∇ωH, the flow generated by (2.1).

We can also compute

d

dt
H(p(t), q(t)) =

∂H
∂p

∂tp+
∂H
∂q

∂tq

=
∂H
∂p

∂H
∂q

+
∂H
∂q

(
−∂H

∂p

)
= 0,

so the Hamiltonian is conserved over time.

Together, invariance of the Lebesgue measure and conservation of the Hamiltonian allow us to
construct another family of invariant measures, which we call the Gibbs measures.

Definition 2.1. Given a Hamiltonian system of the form (2.1) and a constant β > 0, we define
the Gibbs measure µ by

dµ =
1

Zβ
e−βH(p,q) dp dq,

where the normalizing constant Zβ (called the ”partition function”) is given by

Zβ =

∫
R2n

e−βH(p,q) dp dq.

It is easy to verify that µ is indeed a probability measure. We will show that Gibbs measures are
also invariant under the flow generated by (2.1), a property we make precise with the following
definition. In the sequel, we use β = 1 and Z := Z1, but any choice of β > 0 will typically
suffice.

Definition 2.2. Let Φt be a member of the one-parameter group of diffeomorphism generated by the
vector field ∇ωH.2 Then, we call a measure µ invariant with respect to ∇ωH if, for any measurable
subset A of the phase space, we have

µ(Φ−t(A)) = µ(A).

For our toy finite-dimensional Hamiltonian system, we can verify that the Gibbs measure on the
phase space R2n is invariant using conservation of the Hamiltonian and invariance of the Lebesgue
measure.

Proposition 2.3. The Gibbs measure µ is invariant under the flow of the Hamiltonian system
given by (2.1).

2In this case, Φt : (p(0), q(0)) 7→ (p(t), q(t)). In future sections, we will have Φt : u(0, ·) 7→ u(t, ·).
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Proof. Let µ be the Gibbs measure and A ⊂ R2n be measurable. Then,

µ(Φ−t(A)) = µ({(p(0), q(0)) ∈ R2n | (p(0), q(0)) ∈ Φ−t(A)})
= µ({(p(0), q(0)) ∈ R2n | (p(t), q(t)) ∈ A})

=
1

Z

∫
A
e−H(p(t),q(t)) dp(t) dq(t)

=
1

Z

∫
A
e−H(p(0),q(0)) dp(0) dq(0)

= µ(A),

where we use that the Hamiltonian is conserved and the Lebesgue measure is invariant. □

3. Formal outline of the Gibbs measure

Now, we return to the nonlinear Schrödinger equation. [Tao06, Exercise 3.1] gives us that NLS is
the formal Hamiltonian flow associated with the Hamiltonian functional H : Hs

x(Td) → R given for
u = u(t, ·) at time t by

H(u) =
1

2

∫
Td

|∇u|2 + λ

p+ 1

∫
Td

|u|p+1.

Then, we can rewrite NLS in terms of H as

∂tu = −i
∂H
∂u

.

As we did in the previous section, we would like to define a Gibbs measure µ by

dµ =
1

Z
e−H(u) du.

Actually, we seek the similar

dµ =
1

Z
e−H(u)− 1

2
M(u) du,

where

M(u) =

∫
Td

|u|2

represents the mass, which is also conserved.3

In the previous section, H was a function on the finite-dimensional phase space R2n, so dp dq
was the well-defined Lebesgue measure on R2n. Here, du represents an analogue on the infinite-
dimensional space Hs

x(Td), but an infinite-dimensional Lebesgue measure does not exist. Therefore,
this definition can only be made sense of formally. For a rigorous construction of the Gibbs measure,
we must replace du by a tractable alternative.

3Adding − 1
2
M(u) in the exponent will replace a homogenous Sobolev Ḣs

x-norm with its inhomogenous counterpart
in the expression for dρs. This will later translate to ⟨n⟩s in a denominator rather than |n|s, avoiding an issue at
n = 0.
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We can proceed by formally rewriting dµ as

dµ =
1

Z
e−H(u)− 1

2
M(u) du

=
1

Z
e
− λ

p+1

∫
Td |u|p+1

e−
1
2

∫
Td |u|2− 1

2

∫
Td |∇u|2 du

=
1

Z̃
e
− λ

p+1

∫
Td |u|p+1

dρ1,

where

dρs =
1

Zs
e−

1
2
∥u∥2Hs

x du

for s ∈ R is an infinite-dimensional analogue of the Gaussian measure and Z̃, Zs are the respective
normalization constants. Although du cannot be defined rigorously, dρs can. We can make sense
of this construction of µ by defining ρs as the limit of finite-dimensional Gaussian measures.

The Fourier inversion formula allows us to write u as

u(t, x) =
∑
n∈Zd

û(t, n)ein·x,

where û(t, n) is the Fourier series of u(t, x) in x. Then, we can take the Littlewood-Paley projections
P≤N of u, which are given by the finite series

(3.1) uN (t, x) := P≤Nu(t, x) =
∑

|n|≤N

û(t, n)ein·x.

The following rigorous argument will construct invariant Gibbs measures for finite-dimensional
truncations of NLS involving uN , then take the limit as N → ∞ to obtain a Gibbs measure for the
genuine NLS.

4. Construction of the Gibbs measure

Motivated by our rigorous argument for finite-dimensional Hamiltonian systems and the formal
convergence uN → u, we consider the finite-dimensional truncation of NLS,

(4.1)

{
i∂tu

N +∆uN = λP≤N (
∣∣uN ∣∣p−1

uN )

uN (t0, x) = P≤Nu0(x),

which we call finite-dimensional because the low-frequency component uN = P≤Nu reduces to
a finite system of ODEs in the frequency space. In the sequel, we fix a time t and consider
u(x) = u(t, x), uN (x) = uN (t, x) as functions of x.

For fixed N ∈ 2N, we construct the Gibbs measure µ for (4.1) as we did for the original NLS. Now,
the infinite-dimensional analogue of the Gaussian measure ρs is replaced by

dρs,N =
1

Zs,N
e
− 1

2∥uN∥2

Hs
x duN ,
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which is a well-defined finite-dimensional Gaussian measure. Indeed, we can expand

dρs,N =
1

Zs,N
e
− 1

2∥uN∥2

Hs
x duN

=
1

Zs,N
e−

1
2

∑
|n|≤N ⟨n⟩2s|û(n)|2 ∏

|n|≤N

dû(n)

=
1

Zs,N

∏
|n|≤N

e−
1
2
⟨n⟩2s|û(n)|2 dû(n).

For any n ∈ Zd, dû(n) represents the Lebesgue measure on C, so each

(4.2) dνs,n := e−
1
2
⟨n⟩2s|û(n)|2 dû(n)

is, after normalization, a Gaussian measure on C with mean zero and variance 2⟨n⟩−2s. Therefore,

ρs,N = 1
Zs,N

∏
|n|≤N dνs,n can be identified as a Gaussian measure on C(2N+1)d .

4.1. Probabilistic perspective. It becomes easier to interpret this statement and take the limit
N → ∞ if we use probabilistic language. In particular, define the mutually independent complex
Gaussian random variables gn : Ω → C by gn(ω) = ⟨n⟩sû(n) on some abstract probability space
(Ω,F ,P). Then, (4.2) becomes

dνs,n = e−
1
2
|gn(ω)|2 d

gn(ω)

⟨n⟩s
,

which is the push-forward measure (gn)∗P = P ◦ g−1
n .

Now, (3.1) becomes

uN (x) =
∑

|n|≤N

gn(ω)

⟨n⟩s
ein·x,

which implies that we can take the limit N → ∞ by replacing the finite sum with an infinite sum
over all n ∈ Zd. Indeed, this will be our approach exactly.

First, we assert the following lemma about the distribution of the gn’s.

Lemma 4.1. For each n ∈ N, E [gn] = 0 and Var (gn) = 2.

Proof. The density is an odd function, so E [gn] = 0. The variance can easily be computed as

Var (gn) = E |gn|2 =
∫
Ω
|gn(ω)|2 dP(ω) = 2.

□

Armed with the distribution of the gn’s, we proceed to take the limit as N → ∞ and show that
uN → u in L2

ω as Hσ
x (Td)-valued random variables for sufficiently small σ.
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Proposition 4.2. The sequence (uN )N is a Cauchy sequence in L2
ω(Ω → Hσ

x (Td)) if and only if
σ < s− d

2 . In that case, it converges to u given by

u(x) :=
∑
n∈Zd

gn(ω)

⟨n⟩s
ein·x.

Proof. Let M,N ∈ N such that M < N . Then, for σ ∈ R,

E
[∥∥uN − uM

∥∥2
Hσ

x

]
= E

 ∑
M<|n|≤N

|gn(ω)|2

⟨n⟩2s−2σ


=

∑
M<|n|≤N

E |gn|2

⟨n⟩2s−2σ

= 2
∑

M<|n|≤N

1

⟨n⟩2s−2σ
,

where we use Lemma 4.1 in the third step. The final expression converges to zero as M,N → ∞
if and only if 2s − 2σ > d, i.e. σ < s − d

2 . In that case, (uN )N is a Cauchy sequence. As

L2
ω(Ω → Hσ

x (Td)) is complete, it must converge. We define u pointwise as the limit of the series. □

Now, we find that

dρs =
1

Zs
e−

1
2
∥u∥2Hs

x du

is the induced probability measure on Hσ
x (Td) for σ < s− d

2 under the map

Ω ∋ ω 7→ u(x) =
∑
n∈Zd

gn(ω)

⟨n⟩s
ein·x ∈ Hσ

x (Td).

That is, considering u as a random variable (i.e. as a function of ω),

ρs = u∗P = P ◦ u−1.

Heuristically, ρs can be interpreted as concentrating weight in regions of functions with small Hσ
x -

norms. This intuition is made precise by the following tail estimate, which essentially says that
∥u∥Hσ

x
is a subgaussian random variable with respect to the probability measure ρs.

Proposition 4.3. Let σ < s− d
2 . Then, there exists a constant c ∈ (0,∞) such that

ρs(∥u∥Hσ
x
> K) ≲ e−cK2

for all K > 0.

Proof. We can compute

ρs(∥u∥Hσ
x
> K) = ρs(e

c∥u∥2Hσ
x > ecK

2
)

=

∫
Hσ

x (Td)
1{

exp(c∥u∥2)
exp(cK2)

>1

} dρs(u)

≤ e−cK2

∫
Hσ

x (Td)
ec∥u∥

2
Hσ
x dρs(u).
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Using Plancherel’s theorem,

C :=

∫
Hσ

x (Td)
ec∥u∥

2
Hσ
x dρs(u)

=

∫
Hσ

x (Td)
ec

∑
n∈Zd ⟨n⟩

2σ |û(n)|2 dρs(u)

=

∫
Hσ

x (Td)

∏
n∈Zd

ec⟨n⟩
2σ |û(n)|2 dρs(u).

As gn(ω) = ⟨n⟩sû(n) and (gn)n is a collection of mutually independent random variables, this is
equal (up to a constant) to∫

C

∏
n∈Zd

ec⟨n⟩
2σ−2s|gn|2e−

1
2
|gn|2 dgn =

∏
n∈Zd

∫
C
ec⟨n⟩

2σ−2s|gn|2e−
1
2
|gn|2 dgn,

which can be integrated to obtain (again up to a constant)∏
n∈Zd

1

1− 2c⟨n⟩2σ−2s
=

∏
n∈Zd

(
1 +

2c⟨n⟩2σ−2s

1− 2c⟨n⟩2σ−2s

)
,

which is finite if and only if ∑
n∈Zd

2c⟨n⟩2σ−2s

1− 2c⟨n⟩2σ−2s
< ∞.

We have that σ < s− d
2 , so 2s− 2σ > d, so the series converges. Therefore, C ∈ (0,∞), so

ρs(∥u∥Hσ
x
> K) ≲ e−cK2

as desired. □

4.2. Construction of Gibbs measure. Now that we have ρs for all s ∈ R, µ can be defined on
Hσ

x (Td) for σ < 1− d
2 by

(4.3) dµ =
1

Z̃
e
− λ

p+1

∫
Td |u|p+1

dρ1.

Going forward, we restrict ourselves to the one-dimensional torus T = R/2πZ.4 We would like to
verify that µ is a nontrivial probability measure on Hσ

x (T) even after we take the limit N → ∞.
This requires the density

dµ

dρ1
∝ e

− λ
p+1

∫
T |u|p+1

to be integrable with respect to ρ1. In the defocusing case (where λ = 1), this is easily verified
using the Sobolev embedding theorem.

Theorem 4.4. In the defocusing case, µ is a nontrivial probability measure on Hσ
x (T) for σ < 1

2 .

Proof. Suppose that σ < 1
2 . Using Proposition 4.2, uN → u in L2

ω(Ω → Hσ
x (T)), so ρ1 is well-defined

as the probability measure on Hσ
x (T) induced by the map ω 7→ u.

4The case d ≥ 2 is substantially different, as µ would be defined on Hσ
x (Td) only for σ < 0.
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By the Sobolev embedding theorem, for any ϵ > 0 sufficiently small,∫
T
|u|p+1 = ∥u∥p+1

Lp+1
x

≲ ∥u∥p+1

H
1
2−ϵ
x

< ∞

almost surely. Therefore,

0 < e
− 1

p+1

∫
T |u|p+1

≤ 1

almost surely, so µ is a nontrivial probability measure on Hσ
x (T) for σ < 1

2 . □

4.3. Focusing case. Unfortunately, the focusing case (where λ = −1) is more difficult to approach.
Let p > 1. We may compute∫

T
|u|p+1 = ∥u∥p+1

Lp+1
x

≥ ∥u∥p+1
L2
x

≍ ∥û∥p+1
ℓ2n

=

[∑
n∈Z

|û(n)|2
] p+1

2

≥
∑
n∈Z

|û(n)|p+1 =
∑
n∈Z

∣∣∣∣gn(ω)⟨n⟩

∣∣∣∣p+1

,

where we use that Lp+1(T) ⊂ L2(T) (as p + 1 > 2), Plancherel’s theorem, and convexity of

|·|
p+1
2 .

Therefore, ∫
Hσ

x (T)
e

1
p+1

∫
T |u|p+1

dρ1 ≥
∏
n∈Z

E
[
e

1
p+1

∣∣∣ gn(ω)
⟨n⟩

∣∣∣p+1]
= ∞,

where we use that each factor is infinite because p+ 1 > 2. We find that the density

dµ

dρ1
∝ e

1
p+1

∫
T |u|p+1

is not integrable, so µ fails to be a well-defined probability measure in the focusing case.

The solution is to introduce a cutoff of the L2-norm (representing the mass), replacing (4.3)
with

dµ =
1

Z̃
1{∥u∥L2≤r}e

1
p+1

∫
T |u|p+1

dρ1

for some r > 0. As proved in [LRS88, Theorem 2.1] and [Bou94, Lemma 3.10], this L2-truncated
density is integrable and yields a well-defined Gibbs measure when 1 < p < 5 for any r > 0.5

Unfortunately, the L2-norm cutoff does not suffice for p > 5.

5. Invariance of the Gibbs measure

This construction of Gibbs measures allows for low-regularity global well-posedness results even in
the periodic setting. For example, we have the following probabilistic result from [Bou94, Lemma
4.4].

Theorem 5.1. Let p ≤ 5. NLS is, almost surely with respect to the Gibbs measure µ, globally
well-posed on Hσ

x (T) for σ < 1
2 .

Based on this almost sure global well-posedness result, [Bou94, p. 17] also proves invariance anal-
ogous to Proposition 2.3.

Theorem 5.2. For p ∈ [3, 5], the Gibbs measure µ is invariant under the flow of NLS in one
dimension.

5For sufficiently small r, the density is integrable even in the mass-critical p = 5 case, so called because the
scaling-critical regularity is sc = 0.
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