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Abstract

First introduced in [Mau75] before being investigated at length in [Bur81], UMD
spaces (Banach spaces for which martingale difference sequences converge uncondi-
tionally) play a central role in the modern theory of Banach space-valued stochastic
and harmonic analysis. In this paper, we systematically develop the framework for
the randomized analogues introduced in [Gar90]: UMD+ and UMD− spaces, which
arise by replacing deterministic signs with Rademacher sequences in martingale in-
equalities. We discuss the general theory of martingales in Banach spaces (including
several important inequalities), then treat the randomized UMD properties as Banach
space properties in their own right. Our study focuses on geometric consequences for
K-convexity, type, cotype, and reflexivity. The results of our exploration underscore
the rich interplay between probability, analysis, and geometry in the study of Banach
spaces.
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Chapter 1

Introduction and Notation

1.1 Introduction

There exists a rich theory of classical analysis involving measure and integration,
function spaces, and the convergence of sequences of functions. This theory has found
numerous applications across almost all areas of pure and applied mathematics: to the
study of ordinary and partial differential equations, probability theory and stochastic
analysis, Fourier and harmonic analysis, as well as across the disciplines of physics,
statistics, and engineering.

In each of these applications, mathematical questions typically arise about the exis-
tence, uniqueness, and properties of measurable functions from a measure space S to
a scalar field R or C. In the context of probability theory, such functions are called R
or C-valued random variables and form the basis for almost the entirety of our study
of probability and stochastic processes. One of the most basic classes of stochastic
processes—indexed families of random variables—is martingales.

The modern study of scalar-valued martingales began with Doob’s publication in 1953
of the first edition of [Doo90]. In this paper, we are principally concerned with the
study of martingales which take values in more general Banach spaces than R or C,
a theory which began in [Cha64]. Although seemingly purely probabilistic objects,
such martingales are actually immensely useful tools for characterizing the analytical
and geometric properties of the Banach spaces in which they take values. This will
be the main theme of our paper: probabilistic statements about martingales actually
have many analytical and geometric consequences.
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Our study will focus on refinements and extensions of a particular class of Banach
spaces called UMD spaces (for “unconditionality of martingale differences”). First
introduced in [Mau75, Pis75], they were connected to the geometry of Banach spaces
in [Bur81] and Banach space-valued harmonic analysis in [Bur83]. The essence of
the theory is that Banach spaces in which the difference sequences of martingales
converge unconditionally also have many other analytical and geometric properties
which make them excellent settings for an extension of the classical theory of analysis.
Instead of considering functions from a measure space S to a scalar field R or C, we
will study functions from S to a UMD space X (and later Banach spaces X which
are not quite UMD, but slightly generalize the UMD property).

Let us begin with the definition of a UMD space.

Definition 1.1.1 (UMD). For p ∈ (1,∞), a Banach space X is called a UMDp

space if there exists a constant β ∈ (0,∞) such that for any X-valued Lp-martingale
difference sequence (dfn)Nn=1 on a σ-finite measure space (S,A, µ) and scalars |ϵn| = 1,
n = 1, . . . , N , we have ∥∥∥∥∥

N∑
n=1

ϵndfn

∥∥∥∥∥
Lp(S;X)

≤ β

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

.

Although the definition appears to depend on the choice of p, it is a deep result of
[Mau75] and [Bur81] that this condition is satisfied for all p ∈ (1,∞) if it is satisfied
by some.

Theorem 1.1.2. For p, q ∈ (1,∞), X is UMDp if and only if it is UMDq.

In this case, we simply say that X is a UMD space or that X satisfies the UMD
property.

Although the UMD property is at first glance a probabilistic statement about mar-
tingales, there is also a harmonic analytical interpretation. For a Banach space X, let
us formally define the Hilbert transform on Lp(R;X) as (the principal value of)

“Hf(x) =
1

π

∫
R

f(y)

x− y
dy.”

It is natural to ask whether H is a bounded operator on Lp(R;X). Two deep results
of Burkholder and Bourgain give us that H is a bounded operator on Lp(R;X) if
and only if X is a UMD space. The forward direction is due to [Bou83], while the
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backward direction is given by [Bur83]. See [Pis16, Chapter 6] for extensive discussion
of this equivalence.

There is also a more probabilistic perspective that appears when we replace the deter-
ministic unit norm scalars with Rademacher random variables (which are uniformly
distributed over the unit circle). The following randomized UMD inequalities were
initially proved in [Gar86] and can be used to establish a quantitative relationship
between UMD constants and the operator norm of the Hilbert transform.

Theorem 1.1.3 (Randomized UMD inequalities). A Banach space X is a UMD
space if and only if for all p ∈ (1,∞), there exist constants β± ∈ (0,∞) such that for
any X-valued Lp-martingale difference sequence (dfn)Nn=1 on a σ-finite measure space
(S,A, µ), we have

1

β−

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ β+

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

,

where (εn)Nn=1 is a Rademacher sequence on a probability space Ω.

Theorem 1.1.3 motivates the following definitions for generalizations of UMD spaces—
each requiring one of the two inequalities—which were first isolated and examined in
their own right in [Gar90].

Definition 1.1.4 (UMD+). For p ∈ (1,∞), a Banach space X is called a UMD+
p

space if there exists a constant β+ ∈ (0,∞) such that for any X-valued Lp-martingale
difference sequence (dfn)Nn=1 on a σ-finite measure space (S,A, µ), we have∥∥∥∥∥

N∑
n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ β+

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

where (εn)Nn=1 is a Rademacher sequence on a probability space Ω.

Definition 1.1.5 (UMD−). For p ∈ (1,∞), a Banach space X is called a UMD−
p

space if there exists a constant β− ∈ (0,∞) such that for any X-valued Lp-martingale
difference sequence (dfn)Nn=1 on a σ-finite measure space (S,A, µ), we have∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤ β−

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

where (εn)Nn=1 is a Rademacher sequence on a probability space Ω.
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Analogous to Theorem 1.1.2, the following result of [Gar90] shows that the UMD+

and UMD− properties hold irrespective of one’s choice of p ∈ (1,∞).

Theorem 1.1.6. For p, q ∈ (1,∞), X is UMD+
p (resp. UMD−

p ) if and only if it is
UMD+

q (resp. UMD−
q ).

In this case, we simply say that X is a UMD+ or UMD− space. We will refer to the
UMD+ and UMD− properties together as the randomized UMD properties in recog-
nition of the roles that Rademacher random variables play in their definitions.

With these definitions and Theorem 1.1.6, we can now rephrase Theorem 1.1.3 as stat-
ing that a Banach space X is UMD if and only if it is both UMD+ and UMD−.

The UMD− property is strictly weaker than the UMD property (Example 3.3.3 shows
that ℓ1 is UMD− but not UMD+ and thus not UMD). It remains an open problem
whether the same is true for UMD+ or whether it is equivalent to the UMD property.
At the very least, [Gei99, Corollary 5] shows that there is not a general linear bound
between the optimal UMD and UMD+ constants for arbitrary X, which hints that
this conjecture may be false. One possible avenue for proving the affirmative may
be showing that the UMD+ property is equivalent to the boundedness of the Hilbert
transform.

There is a wealth of literature examining UMD and randomized UMD spaces with
examples of such spaces. Existing literature focuses on either consequences of the
UMD property or particular examples of spaces which satisfy some or none of the
UMD or randomized UMD properties. Textbooks such as [Pis16] and [HvVW16] also
discuss these properties, examples, and the general use of UMD spaces as a convenient
setting for Banach space-valued analysis.

At the moment, there are no surveys which study the randomized UMD properties
other than as consequences of the UMD property via Theorem 1.1.3. As many conve-
nient properties of UMD spaces are inherited by UMD+ spaces, we believe it useful to
study UMD+ and UMD− as Banach space properties in their own right rather than
as corollaries of the UMD property.

In this paper, we will discuss the consequences of the randomized UMD properties
with a focus on treating them independently of one another and the UMD property.
Chapter 2 concerns the general theory of martingales in Banach spaces, particularly
the inequalities of Doob, Kahane, and Kahane-Khintchine, which will be useful for us
in later chapters. Chapter 3 discusses the basic properties and examples of UMD+ and
UMD− spaces, with an eye for those that are different from UMD spaces. Chapter 4
discusses the consequences of the UMD+ and UMD− properties for K-convexity, type,
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cotype, and other geometrical notions. Finally, Chapter 5 concludes with a discussion
of the remaining open questions.

1.2 Notation

The symbol K is used to stand in for the underlying scalar field of a Banach space,
either R or C. For the unit circle of K, we write SK = {z ∈ K | |z| = 1}.

We use (S,A, µ) and (T,B, ν) to denote σ-finite measure spaces, typically those on
which a martingale is defined. Generally, (fn)Nn=1 is a martingale defined on S and
(dfn)Nn=1 is its difference sequence.

We use (Ω,F ,P) and (Ω̃, F̃ , P̃) to denote probability spaces. We also use E[·] and Ẽ[·]
to denote the expectation with respect to random variables defined on (Ω,F ,P) and

(Ω̃, F̃ , P̃), respectively.

Unless otherwise specified, (εn)Nn=1 is an independent Rademacher sequence on (Ω,F ,P),
i.e. a sequence which is independent and uniformly distributed along SK.1 The same
holds for (ε̃n)Nn=1 on (Ω̃, F̃ , P̃). We will distinguish real Rademacher sequences (those
which are independent and uniformly distributed along {−1, 1}) that take values in
complex Banach spaces by writing (rn)Nn=1 rather than (εn)Nn=1.

For p ∈ [1,∞], we denote by p′ the Hölder conjugate of p: the unique p′ ∈ [1,∞] such
that

1

p
+

1

p′
= 1,

with the convention that 1/∞ = 0.

1When K = C, these are sometimes known in the literature as Steinhaus random variables and
sequences, but we will not use this terminology.
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Chapter 2

Martingales in Banach Spaces

Before we treat the UMD and randomized UMD properties, we must generalize the
machinery of martingales to Banach spaces. We begin this chapter with the con-
struction of conditional expectations for Banach space-valued random variables. In
Section 2.2, we define Banach space-valued martingales and prove Doob’s maximal
inequalities. Finally, in Section 2.3, we discuss Rademacher sequences before prov-
ing Kahane’s contraction principle and the Kahane-Khintchine inequalities. Each of
these theorems will be immensely useful to us during our study of the randomized
UMD properties in the next chapter.

2.1 Conditional expectation

The goal of this section is to generalize the notion of conditional expectation to the
Banach space setting, Generally, conditional expectations are defined for functions
on probability spaces (i.e. random variables). We will choose to define conditional
expectations for a broader class of functions defined on σ-finite measure spaces, which
is convenient for harmonic analysis set on UMD spaces. These arguments are classical,
but our presentation is based mainly on that of [HvVW16].

For all of this section, let (S,A, µ) be a σ-finite measure space and let F ⊆ A be a
sub-σ-algebra for which µ is σ-finite. For any function f ∈ L0(S;X), write

Ff := {F ∈ F | 1Ff ∈ L1(S;X)}

for the sets in F over which f is integrable. Then, we define the following class of
functions for which we will construct conditional expectations.
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Definition 2.1.1 (σ-integrable). For a σ-finite sub-σ-algebra F ⊆ A, a function
f ∈ L0(S;X) is called σ-integrable over F if S can be covered by a countable collection
(Fn)n∈N of sets in Ff .

We shall call such a countable collection an exhausting sequence for f in F . If (Fn)n∈N
is an exhausting sequence, (Gn)n∈N given by G1 = F1 and Gn = Fn\∪n−1

j=1Fn is also an
exhausting sequence, so we can assume without loss of generality that any exhausting
sequence is pairwise disjoint, Now, if f is σ-integrable over F , we can split it up into
countably many parts with disjoint support which are each integrable.

For such functions, our goal is to construct conditional expectations which satisfy the
following definition.

Definition 2.1.2 (Conditional expectation). Let f ∈ L0(S;X) be σ-integrable over
F . A function g ∈ L0(S,F ;X) is called a conditional expectation with respect to F
of f if ∫

F

g dµ =

∫
F

f dµ (2.1.1)

for all F ∈ Ff ∩ Fg.

Without proof, we assume the existence and uniqueness of conditional expectation in
the scalar case as well as standard properties such as conditional Jensen’s inequality
and Lp-contractivity. The details will be in most probability theory references, such as
[Dur10]. Now, we will prove existence and uniqueness in the Banach space case.

2.1.1 Uniqueness of conditional expectation

In order to prove existence and uniqueness, we would like to replace eq. (2.1.1) with
another condition which is easier to verify. For that reason, we define an exhausting
ideal for F as a subset C ⊆ F which is an ideal in the sense that C ∩ F ∈ C for any
C ∈ C, F ∈ F and for which S can be covered by a countable subcollection of sets in
C. It is easy to check that any exhausting ideal is closed under countable intersections
and contains a countable pairwise disjoint cover of S.

If f ∈ L0(S,F ;X) is σ-integrable, then for an exhausting sequence (Fn)n∈N, f is
integrable on Fn ∩ {∥f∥X ≤ m} for all m,n ∈ N, so {Fn ∩ {∥f∥X ≤ m}}n,m∈N is also
an exhausting sequence for f in F . It follows that Ff is an exhausting ideal for F .
Now, we show that we can verify that a function g ∈ L0(S,F ;X) is a conditional
expectation of f ∈ L0(S;X) with respect to F by checking only sets in an exhausting
ideal for Ff ∩ Fg.
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Lemma 2.1.3. For f ∈ L0(S;X) which is σ-integrable over F , g ∈ L0(S,F ;X) is
a conditional expectation of f with respect to F if and only if there is an exhausting
ideal C ⊆ Ff ∩ Fg for F such that∫

C

g dµ =

∫
C

f dµ

for all C ∈ C.

Proof. If g is a conditional expectation of f with respect to F , Ff and Fg are ex-
hausting ideals for F by the discussion above this lemma, so their intersection is as
well. Then, the definition of conditional expectation means that the desired identity
holds for all C ∈ Ff ∩ Fg.

Suppose instead that the identity holds for all C ∈ C where C ⊆ Ff ∩ Fg is an
exhausting ideal. Fix F ∈ Ff ∩ Fg and cover S by a pairwise disjoint subcollection
(Cn)n∈N of C. Then, F ∩ Cn ∈ C for n ∈ N, so∫

F∩Cn

g dµ =

∫
F∩Cn

f dµ.

Summing over all n ∈ N and using the dominated convergence theorem, it follows
that g is a conditional expectation of f with respect to F .

This lemma allows us to verify and compare conditional expectations using only sets
in an exhausting ideal C ⊆ Ff . We use this tool to prove two lemmas for the scalar
case from which uniqueness of conditional expectation will follow. First, we show
that comparing the integral over sets in an exhausting ideal with zero allows us to
compare the integrand with zero.

Lemma 2.1.4. Let f ∈ L0(S,F) and suppose that C ⊆ Ff is an exhausting ideal for
F . If

∫
C
f dµ ≥ 0 (resp. ≤ 0,= 0) for all C ∈ C, then f ≥ 0 (resp. ≤ 0,= 0) almost

everywhere.

Proof. As f is F -measurable, Fk := {f < − 1
k
} ∈ F for all k ≥ 1. Fix a set C ∈ C.

Then, C ∩ Fk ∈ C, which implies that µ(C ∩ Fk) < ∞ (otherwise f would not be
integrable on the set) and

0 ≤
∫
C∩Fk

f dµ ≤ −1

k
µ(C ∩ Fk) ≤ 0,
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so µ(C ∩ Fk) = 0. We have that {f < 0} = ∪k≥1Fk, so it follows that µ(C ∩ {f <
0}) = 0. As an exhausting ideal, C contains a cover of S, so applying this identity
to all sets in the cover, we find that µ({f < 0}) = 0, so f ≥ 0 almost everywhere.
Apply this fact with −f for “f ≤ 0” and combine the two cases for “f = 0”.

In the second lemma, we show that, for a conditional expectation g ∈ L0(S) of a
scalar-valued f ∈ L0(S), Ff ⊆ Fg and their integrals over sets in Ff agree.

Lemma 2.1.5. Let f ∈ L0(S) be σ-integrable over F . Then, Ff ⊆ FE[f |F ] and∫
F

E[f | F ] dµ =

∫
F

f dµ

for all F ∈ Ff .

Proof. We will prove this lemma for the real-valued case, from which the complex-
valued case follows using that Ff = FRe f ∩ FIm f and FE[f |F ] = FReE[f |F ] ∩ FImE[f |F ],
so that ReE[f | F ] and ImE[f | F ] are the conditional expectations of Re f and
Im f .

By Lemma 2.1.3, C = Ff ∩ FE[f |F ] is an exhausting ideal for F . Therefore, there
exists a pairwise disjoint cover (Cn)n∈N of S in C. Fix a set F ∈ Ff . As E[f | F ] is
F -measurable, {E[f | F ] ≥ 0} ∈ F , so F ∩ Cn ∩ {E[f | F ] ≥ 0} ∈ C and∫

F∩Cn∩{E[f |F ]≥0}
E[f | F ] dµ =

∫
F∩Cn∩{E[f |F ]≥0}

f dµ.

Summing over n, then using the monotone convergence theorem on the left-hand side
and the dominated convergence theorem on the right-hand side,∫

F∩{E[f |F ]≥0}
E[f | F ] dµ =

∫
F∩{E[f |F ]≥0}

f dµ.

The same argument holds for the integrals over F ∩ {E[f | F ] < 0}, so∫
F

|E[f | F ]| dµ =

∫
F∩{E[f |F ]≥0}

E[f | F ] dµ−
∫
F∩{E[f |F ]<0}

E[f | F ] dµ

=

∫
F∩{E[f |F ]≥0}

f dµ−
∫
F∩{E[f |F ]<0}

f dµ

≤
∫
F

|f | dµ

< ∞,
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which implies that F ∈ FE[f |F ]. Also,∫
F

E[f | F ] dµ =

∫
F∩{E[f |F ]≥0}

E[f | F ] dµ +

∫
F∩{E[f |F ]<0}

E[f | F ] dµ

=

∫
F∩{E[f |F ]≥0}

f dµ +

∫
F∩{E[f |F ]<0}

f dµ

=

∫
F

f dµ,

as desired.

With these lemmas for scalar conditional expectation, we are now prepared to prove
uniqueness of conditional expectation in the Banach space-valued case.

Theorem 2.1.6 (Uniqueness of conditional expectation). Suppose that f ∈ L0(S;X)
is σ-integrable over a σ-finite sub-σ-algebra F ⊆ A. If g, h ∈ L0(S;X) are conditional
expectations of f with respect to F , then g = h almost everywhere.

Proof. For any x∗ ∈ X∗, ⟨g, x∗⟩ and ⟨h, x∗⟩ are conditional expectations for ⟨f, x∗⟩.
By Lemma 2.1.5, for any F ∈ F⟨f,x∗⟩, we have that F ∈ F⟨g,x∗⟩ ∩ F⟨h,x∗⟩ and∫

F

⟨g, x∗⟩ dµ =

∫
F

⟨f, x∗⟩ dµ =

∫
F

⟨h, x∗⟩ dµ.

Applying Lemma 2.1.4 to ⟨g − h, x∗⟩ and C = F⟨f,x∗⟩, this implies that ⟨g, x∗⟩ = ⟨h, x∗⟩
almost everywhere. Our choice of x∗ ∈ X∗ was arbitrary, so this holds for all such
x∗, so it follows that g = h almost everywhere.

Now that we have shown uniqueness, we will denote by E[f | F ] the unique conditional
expectation of f ∈ L0(S;X) with respect to F , if it exists.

2.1.2 Existence of conditional expectation

It remains to prove the existence of the conditional expectation E[f | F ] for any f ∈
L0(S;X) which is σ-integrable over F . Recall from the scalar case that the conditional
expectation operator E[· | F ] is defined on L2(S) as the orthogonal projection onto
L2(S,F), which extends to a contractive operator on L1(S) satisfying∫

F

E[f | F ] dµ =

∫
F

f dµ
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for F ∈ F .

In order to extend this operator to the Banach space case, we employ the follow-
ing lemma, which gives that certain operators on Lp(S) spaces can be extended to
Lp(S;X) spaces.

Lemma 2.1.7. Fix p ∈ [1,∞) and q ∈ [1,∞]. Let (S,A, µ) and (T,B, ν) be σ-finite
measure spaces, let E : Lp(S) → Lq(T ) be a bounded linear operator, and let X be a
Banach space. If Ef ≥ 0 for all f ≥ 0, then E ⊗ IX extends uniquely to a bounded
operator from Lp(S;X) to Lq(T ;X), which satisfies

∥E ⊗ IX∥Lp(S;X)→Lq(T ;X) = ∥E∥Lp(S)→Lq(T ).

Proof. Let f ∈ Lp(S) ⊗X be a simple function. We can write

f =
N∑

n=1

1An ⊗ xn

for A1, . . . , AN pairwise disjoint. As Ef ≥ 0 for any f ≥ 0, |E1An| = E1An . There-
fore,∥∥∥∥∥(E ⊗ IX)

(
N∑

n=1

1An ⊗ xn

)∥∥∥∥∥
Lq(T ;X)

=

(∫
T

∥∥∥∥∥
N∑

n=1

E1An ⊗ xn

∥∥∥∥∥
q

dν

) 1
q

≤

(∫
T

(
N∑

n=1

|E1An|∥xn∥X

)q

dν

) 1
q

=

(∫
T

(
E

N∑
n=1

1An∥xn∥X

)q

dν

) 1
q

=

∥∥∥∥∥E
N∑

n=1

1An∥xn∥X

∥∥∥∥∥
Lq(T )

≤ ∥E∥Lp(S)→Lq(T )

∥∥∥∥∥
N∑

n=1

1An∥xn∥X

∥∥∥∥∥
Lp(S)

= ∥E∥Lp(S)→Lq(T )

∥∥∥∥∥
N∑

n=1

1An ⊗ xn

∥∥∥∥∥
Lp(S;X)

,
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for q < ∞ (or the same with the L∞-norm for q = ∞).

Now, simple functions are dense in Lp(S;X), so E ⊗ IX extends uniquely to a
bounded operator from Lp(S;X) to Lq(T ;X) with norm ∥E ⊗ IX∥Lp(S;X)→Lq(T ;X) ≤
∥E∥Lp(S)→Lq(T ). For the other direction of the inequality, consider functions of the
form g ⊗ x with g ∈ Lp(S) and x ∈ X with ∥x∥X = 1.

The scalar conditional expectation is a contraction on L1(S). By monotonicity, f ≥ 0
implies E[f | F ] ≥ 0, so we can apply the previous lemma, which gives us that
E[· | F ] ⊗ IX extends uniquely to a contractive operator E on L1(S;X). It remains
to show that E satisfies Definition 2.1.2.

For simple functions, E(g⊗x) = E[g | F ]⊗x. For other functions, we can use the same
limiting argument as the scalar case to show that eq. (2.1.1) holds. Therefore, the
extension is indeed the conditional expectation on L1(S;X). This justifies the slight
abuse of notation in writing E[· | F ] for the Banach space conditional expectation as
well as the scalar conditional expectation. Now, for every f ∈ L1(S;X), we have that
E[f | F ] ∈ L1(S,F ;X) is the unique conditional expectation of f with respect to F .
Moreover, it satisfies

∥E[f | F ]∥L1(S;X) ≤ ∥f∥L1(S;X)

and ∫
F

E[f | F ] dµ =

∫
F

f dµ

for all F ∈ F . Next, we wish to extend this operator from f ∈ L1(S;X) to σ-
integrable f ∈ L0(S;X).

Theorem 2.1.8 (Existence of conditional expectation). Suppose that f ∈ L0(S;X)
is σ-integrable over a σ-finite sub-σ-algebra F ⊆ A. Then, there exists a unique
conditional expectation in L0(S,F ;X) of f with respect to F . Denoting it by E[f | F ],
we have that Ff ⊆ FE[f |F ] and∫

F

E[f | F ] dµ =

∫
F

f dµ

for any F ∈ Ff .

Proof. Fix a pairwise disjoint exhausting sequence (Fn)n∈N for f in F . As 1Fnf ∈
L1(S;X) for all n ∈ N, we have by the discussion above this theorem that each has
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a conditional expectation, so

g :=
∞∑
n=1

1FnE[1Enf | F ]

is a well-defined function. By Lemma 2.1.3, Cn = F1Fnf
∩FE[1Fnf |F ] is an exhausting

ideal in F for each n ∈ N. Then,

C =
⋃
n∈N

{C ∩ Fn | C ∈ Cn}

is also an exhausting ideal in F , so Lemma 2.1.3 implies that g is in fact a conditional
expectation of f with respect to F . Uniqueness follows from Theorem 2.1.6, so we
can write E[f | F ] = g.

Let F ∈ Ff , so 1Ff ∈ L1(S;X) and has a conditional expectation with respect to F .
Then, for any G ∈ Ff ∩ Fg,∫

G

1Ff dµ =

∫
F∩G

f dµ =

∫
F∩G

E[f | F ] dµ =

∫
G

1FE[f | F ] dµ,

so 1FE[f | F ] is the conditional expectation of 1Ff with respect to F . Then, 1FE[f |
F ] ∈ L1(S;X) and satisfies∫

F

E[f | F ] dµ =

∫
S

1FE[f | F ] dµ =

∫
S

1Ff dµ =

∫
F

f dµ,

which proves the claim.

With this theorem, we have successfully defined conditional expectations with respect
to σ-finite sub-σ-algebras for Banach space-valued functions which are σ-integrable
over the sub-σ-algebra.

By the same arguments as the scalar case, the Banach space conditional expecta-
tion inherits most of the useful properties that we have come to expect: dominated
convergence, Jensen’s inequality, Lp-contractivity, and the tower property. For the
details of these theorems, see [HvVW16, Section 2.6]. Our next order of business is
to use our construction of conditional expectations to define the notion of a Banach
space-valued martingale.
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2.2 Martingales and their analysis

Having constructed conditional expectations, we can now turn to the stochastic basis
for the UMD and randomized UMD properties. There are two probabilistic ingre-
dients in the definitions of the properties: martingales and Rademacher sequences.
For the remainder of this chapter, we study the behavior of each of these two ob-
jects. The first section covers martingales and Doob’s maximal inequalities, while
the second covers Rademacher sequences, Kahane’s contraction principle, and the
Kahane-Khintchine inequalities.

2.2.1 Martingales

Equipped with conditional expectation operators, we proceed to define Banach space-
valued martingales in much the same way as R-valued martingales. First, we define
a filtration of σ-algebras on a measurable space and sequences of random variables
which are adapted to a filtration.

Definition 2.2.1 (Filtration). A filtration on a measurable space (S,A) is a sequence
(F)Nn=1 of sub-σ-algebras of A such that Fm ≤ Fn for all indices m ≤ n. A sequence
of functions (fn)Nn=1 in L0(S;X) is called adapted to (Fn)Nn=1 if fn is Fn-measurable
for all n = 1, . . . , N .

These definitions of filtrations and adapted sequences give rise to a natural extension
of the definition of martingales to the Banach space setting.

Definition 2.2.2 (Martingale). Let (S,A, µ) be a σ-finite measure space with σ-
finite filtration (Fn)Nn=1 and X be a Banach space. A sequence of functions (fn)Nn=1

in L0(S;X) is called a martingale if it is adapted to (Fn)Nn=1 and, for all indices
m ≤ n, fn is σ-integrable over Fm and satisfies E [fn | Fm] = fm. If the sequence lies
in Lp(S;X) for some p ∈ [1,∞], it is called an Lp-martingale.

We can slightly relax this definition in two ways. We call a sequence of functions
(fn)Nn=1 which satisfies all other properties of a martingale but only has E [fn | Fm] ≥
fm a submartingale. Similarly, a sequence (fn)Nn=1 which satisfies all other properties
but only has E [fn | Fm] ≤ fm is called a supermartingale. Of course, a sequence is a
martingale if and only if it is both a submartingale and a supermartingale.

UMD spaces and their randomized counterparts are defined by the behavior of dif-
ference sequences of martingales, which are given by the following definition.

Definition 2.2.3 (Martingale difference sequence). Let (fn)Nn=1 be an X-valued mar-
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tingale. The sequence (dfn)Nn=1 defined by dfn := fn − fn−1 (with the convention that
f0 = 0) is called the martingale difference sequence associated with (fn)Nn=1. If (fn)Nn=1

is an Lp-martingale, (dfn)Nn=1 is called an Lp-martingale difference sequence.

Our definitions give way to another simple characterization of martingale difference
sequences without the martingales which generate them. Given an arbitrary sequence
of functions (dn)Nn=1 in L0(S;X), it is a martingale difference sequence (for some
martingale on a σ-finite measure space (S,A, µ) with filtration (Fn)Nn=1) if and only
if it is adapted, σ-integrable with respect to (Fn)Nn=1, and E [dn | Fn−1] = 0 for all
n = 1, . . . , N (with the convention that F0 is the trivial σ-algebra).

It is easy to check that, when H is a Hilbert space, L2(S;H)-martingale difference
sequences are orthogonal, which we do in the following proposition.

Proposition 2.2.4. Let H be a Hilbert space and (S,A, µ) be a σ-finite measure
space. Then, any L2(S;H)-martingale difference sequence (dfn)Nn=1 is mutually or-
thogonal. In particular,∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
L2(S;H)

=

(
N∑

n=1

∥dfn∥2L2(S;H)

) 1
2

.

Proof. For m < n, E[dfn | Fm] = 0 and dfm is Fm-measurable, so∫
S

⟨dfn, dfm⟩H dµ =

∫
S

E[⟨dfn, dfm⟩H | Fm] dµ =

∫
S

⟨E[dfn | Fm], dfm⟩H = 0.

That is, (dfn)Nn=1 is mutually orthogonal. Then, we have by the Pythagorean theorem
that ∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
L2(S;H)

=

(
N∑

n=1

∥dfn∥2L2(S;H)

) 1
2

,

as desired.

One of the most convenient characteristics of Hilbert spaces is the existence of or-
thogonal sequences. The proposition which we have just proven implies that it may
be possible to adopt this notion in the more general Banach space setting by substi-
tuting martingale difference sequences for orthogonal sequences. In the setting of the
proposition, we have the identity∥∥∥∥∥

N∑
n=1

ϵndfn

∥∥∥∥∥
L2(S;H)

=

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
L2(S;H)
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for scalars |ϵn| = 1, n = 1, . . . , N . Up to some constant, the UMD property given
by Definition 1.1.1 extends this notion from L2(S;H) to Lp(S;X), where X is not
necessarily a Hilbert space.

For the rest of this section, we study the analysis of martingales: their approximation
and estimates for their norms.

2.2.2 Approximation of martingales

In the previous section, we gave a slightly more general notion of martingales than
usual. Rather than define martingales on probability spaces (i.e. measure spaces for
which µ(S) = 1), we chose to define them on the more general class of σ-finite measure
spaces. The reason for this choice was that one may encounter σ-finite measure spaces
which are not probability spaces in harmonic analysis.

That being said, the following lemma shows that it is possible to approximate mar-
tingales on σ-finite measure spaces by simple martingales whose supports have finite
measure. The proof is based on that of [Pis16, Lemma 5.41].

Lemma 2.2.5. Let (fn)Nn=1 be an Lp(S;X)-martingale for a σ-finite measure space
(S,A, µ) adapted to a σ-finite filtration (Fn)Nn=1. For any ϵ > 0, there exists a sequence
of functions (gn)Nn=1 from S to X such that:

(1) for n = 1, . . . , N , gn is a simple function which is supported on a set E ∈ F1 with
µ(E) < ∞,

(2) the sequence formed by restricting gn to E for n = 1, . . . , N forms a martingale
with respect to a filtration of finite σ-algebras on E,

(3) ∥fn − gn∥Lp(S;X) < ϵ for n = 1, . . . , N .

Proof. As S is σ-finite, the dominated convergence theorem gives us an E ∈ F1 with
µ(E) < ∞ such that ∥1Ecfn∥Lp(S;X) < δ for any δ > 0. Then, for n,m = 1, . . . , N ,

E[1Efn | Fm] = 1EE[fn | Fm],

so (1Efn)Nn=1 is also a martingale. Replacing (fn)Nn=1 with (1Efn)Nn=1, we can suppose
without loss of generality that fn is supported on the finite measure set E.

Now, let δ > 0. By density of simple functions in Lp(S;X), there exist sn ∈ Lp(S;X)
with ∥sn − dfn∥Lp(S;X) < δ for n = 1, . . . , N .
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Consider the filtration of finite σ-algebras (Gn)Nn=1 given by

G1 := σ(E, s1) ⊆ F1, Gn := σ(Gn−1, sn) ⊆ Fn,

so that (sn)Nn=1 is adapted to (Gn)Nn=1 on E.

Define the martingale (gn)Nn=1 by its difference sequence dgn = sn − E[sn | Gn−1],
which is thus adapted to (Gn)Nn=1 on E.

Now, for n = 1, . . . , N ,

E[dfn | Gn−1] = E[E[dfn | Fn−1] | Gn−1] = E[0 | Gn−1] = 0

and

∥dgn − dfn∥Lp(S;X) = ∥sn − dfn − E[sn − dfn | Gn−1]∥Lp(S;X) ≤ 2∥sn − dfn∥Lp(S;X) < 2δ,

so, summing the difference sequences, ∥gn − fn∥Lp(S;X) < (1 + 2n)δ ≤ (1 + 2N)δ. Our
choice of δ > 0 was arbitrary, so this proves the claim.

Later on, we will use this fact to show that the UMD+ and UMD− properties follow
from considering the behavior of simple martingales whose images are contained in
finite-dimensional subspaces of X. In the next subsection, our study of martingales
concludes with proofs for Doob’s maximal inequalities.

2.2.3 Doob’s maximal inequalities

Martingales are defined by the fundamental equality E [fn | Fm] = fm, but from this
equality arise several important inequalities which are useful for their analysis. First
among these are Doob’s classical maximal inequalities first stated in [Doo90], which
control the maximal functions of martingales and scalar submartingales: the maxima
of their norms. In this subsection, we prove Doob’s inequalities first in the scalar
case, then for Banach space-valued martingales.

We begin with the definition of the maximal function of a sequence of functions (in
particular, of a martingale).

Definition 2.2.6 (Maximal function). For a sequence of functions (fn)Nn=1 from S to
a Banach space X and some fixed 1 ≤ M ≤ N , the maximal function f ∗

M : S → [0,∞)
is given by

f ∗
M := max

1≤n≤M
∥fn∥X .
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Before proceeding to Doob’s maximal inequalities in the Banach space-valued setting,
we mention the inequality for the scalar submartingale case.

Lemma 2.2.7. Let (fn)Nn=1 be a non-negative scalar submartingale. Then, for all
1 ≤ M ≤ N and any λ > 0,

µ(f ∗
M > λ) ≤ 1

λ

∫
{f∗

M>λ}
fM dµ.

Proof. Define the stopping time τ : S → {1, . . . ,M + 1} by

τ := min{n ∈ {1, . . . ,M} | fn > λ}

with the convention that min ∅ = M + 1. Then, {f ∗
M > λ} = {τ ≤ M}. We can

compute

λµ(f ∗
M > λ) = λ

∫
{τ≤M}

dµ

= λ
M∑
n=1

∫
{τ=n}

dµ

≤
M∑
n=1

∫
{τ=n}

fn dµ

≤
M∑
n=1

∫
{τ=n}

E [fM | Fn] dµ

=
M∑
n=1

∫
{τ=n}

fM dµ

=

∫
{f∗

M>λ}
fM dµ,

using that (fn)Nn=1 is a submartingale and the definition of conditional expectation.

Now, we proceed to reduce Doob’s maximal inequalities to a statement about scalar
submartingales, then apply the lemma above to complete the proof. Here, we con-
sider the p = 1 and p > 1 cases separately; the latter follows directly from the
former. Qualitatively, their content is that the maximum of an Lp-martingale is also
in Lp.
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Theorem 2.2.8 (Doob’s maximal inequalities). Let X be a Banach space, fix p ∈
[1,∞], and let (fn)Nn=1 be a non-negative scalar Lp(S)-submartingale or an Lp(S;X)-
martingale for a σ-finite measure space (S,A, µ). Then, for any λ > 0 and 1 ≤ M ≤
N ,

µ(f ∗
M > λ) ≤ 1

λ
∥fM∥L1(S;X), if p = 1,

∥f ∗
M∥Lp(S) ≤ p′∥fM∥Lp(S;X), if p ∈ (1,∞].

Proof. If (fn)Nn=1 is an Lp(S;X)-martingale, (Fn)Nn=1 given by Fn = ∥fn∥X is a non-
negative scalar Lp-submartingale, so it suffices to consider only the case where (fn)Nn=1

is a non-negative scalar Lp-submartingale. Using the previous lemma,

µ(f ∗
M > λ) ≤ 1

λ

∫
{f∗

M>λ}
fM dµ ≤ 1

λ
∥fM∥L1(S),

which is the first inequality.

Applying the previous equation again,

∥f ∗
M∥pLp(S) =

∫ ∞

0

pλp−1µ(f ∗
M > λ) dλ

≤
∫ ∞

0

pλp−2

∫
{f∗

M>λ}
fM dµ dλ

=

∫
S

(∫ f∗
M (s)

0

pλp−2 dλ

)
fM(s) dµ(s)

= p′
∫
S

fM(f ∗
M)p−1 dµ

≤ p′∥fM∥Lp(S)∥f
∗
M∥p−1

Lp(S).

Dividing by ∥f ∗
M∥p−1

Lp(S) on both sides (which is finite, as (fn)Nn=1 is an Lp-submartingale),
we obtain

∥f ∗
M∥Lp(S) ≤ p′∥fM∥Lp(S),

which is the second inequality.

In the general theory of martingales, Doob’s maximal inequalities are immensely
useful for proving results about the convergence of Lp-martingales. See [Cha64, IN68]
for examples of such usage. They also have applications to harmonic analysis via the
Fefferman-Stein inequality of [FS71]. We will later use Doob’s maximal inequalities
for the computation of randomized UMD constants.
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2.3 Rademacher sequences

As we have seen, the UMD and randomized UMD properties are defined using the
norms of Rademacher sums of martingale difference sequences. We treated martin-
gales in the previous section; in this section, we study Rademacher sequences. We
begin with the definitions.

Definition 2.3.1 (Rademacher random variable and sequence). A Rademacher ran-
dom variable is a random variable ε : Ω → K on a probability space (Ω,F ,P) which is
uniformly distributed over SK := {z ∈ K | |z| = 1} (where K is the underlying field).
A Rademacher sequence is a sequence (εn)Nn=1 of independent Rademacher random
variables.

We will typically denote Rademacher random variables taking values in SK by ε and
real Rademacher variables (i.e. those taking values in {−1, 1} even when the scalar
field is C) by r. Complex Rademacher random variables are typically known in the
literature as Steinhaus random variables, but we will not use this term.

The following subsections detail some inequalities involving Rademacher sequences
which we will use during our examination of UMD spaces and their properties in the
sequel.

2.3.1 Kahane’s contraction principle

We begin by proving Kahane’s contraction principle, which enables the factoring out
of scalar coefficients from Rademacher sums of elements in a Banach space. The
original inequality was obtained in [Kah85], while the variant for real Rademacher
sequences is from [PW98, Principle 3.5.4]. Both follow by convexity arguments, for
which we begin with the definitions of convex and absolute convex hulls. Our proof
is modeled off of that of [HvVW16, Proposition 3.2.10].

Definition 2.3.2 (Convex, absolute convex hulls). Let T be a subset of a vector space
V .

(1) The convex hull of T , conv(T ), is the set of all vectors of the form
∑k

j=1 λjxj,
where λ1, . . . , λk ∈ [0, 1] sum to one and x1, . . . , xk ∈ T .

(2) The absolute convex hull of T with respect to scalar field K, convK(T ), is the set
of all vectors of the form

∑k
j=1 λjxj, where λ1, . . . , λk ∈ K with

∑k
j=1 |λj| ≤ 1

and x1, . . . , xk ∈ T .
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It is easy to check that conv commutes with Cartesian products, which we do in the
following lemma. Note that the same statement is not necessarily true if conv is
replaced by abco.

Lemma 2.3.3. Let X1, . . . , XN be vector spaces and let En ⊆ Vn for n = 1, . . . , N .
Then,

conv(E1 × · · · × EN) = conv(E1) × · · · × conv(EN).

Proof. By iteratively taking Cartesian products, we can suppose without loss of gen-
erality that N = 2. Clearly, the left-hand side of the equality is a subset of the
right-hand side. For the other direction, let (x, y) ∈ conv(E1) × conv(E2). Then, we
can write

x =
k∑

i=1

λixi, y =
l∑

j=1

µjyj

for x1, . . . , xk ∈ E1, y1, . . . , yl ∈ E2, and λ1, . . . , λk, µ1, . . . , µl ∈ [0, 1] with
∑k

i=1 λi =∑l
j=1 µj = 1. This implies that

∑k
i=1

∑l
j=1 λiµj = 1 as well, so

(x, y) =

(
k∑

i=1

λixi,
l∑

j=1

µjyj

)
=

k∑
i=1

l∑
j=1

λiµj(xi, yj) ∈ conv(E1 × E2),

which proves the claim.

We now take a brief detour to mention the following consequence of the Hahn-Banach
theorem, which we use to relate (BC)N with abcoC({−1, 1}N) for the proof of the real
Rademacher sequence variant from [PW98].

Lemma 2.3.4. Let X and Y be Banach spaces and let T : X → Y be a bounded linear
operator such that there exists a δ > 0 such that ∥Tx∥Y ≥ δ∥x∥X for all x ∈ X. Then,

δBX∗ ⊆ T ∗BY ∗ .

Proof. Suppose dim(X) ≥ 1, otherwise the claim is trivial. Let Y0 := TX, which is
a closed subspace of Y . Fix x∗

0 ∈ X∗ with ∥x∗
0∥X∗ = 1 and define y∗0 : Y0 → K by

⟨Tx, y∗0⟩ := ⟨x, x∗
0⟩. Then,

|⟨Tx, y∗0⟩| ≤ ∥x∥X∥x
∗
0∥X∗ ≤

1

δ
∥Tx∥Y ,
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so y∗0 ∈ Y ∗
0 and ∥y∗0∥Y ∗ ≤ 1

δ
. By the Hahn-Banach theorem, y∗0 extends to y∗ ∈ Y ∗

with ∥y∗∥Y ∗ ≤ 1
δ
. Then,

⟨x, T ∗y∗⟩ = ⟨Tx, y∗⟩ = ⟨Tx, y∗0⟩ = ⟨x, x∗
0⟩

for all x ∈ X, so δx∗
0 = T ∗(δy∗) ∈ T ∗BY ∗ , which proves the claim.

Applying the lemma above with a particular choice of operator T , the following lemma
shows that (BC)N is a subset of abcoC({−1, 1}N), after scaling.

Lemma 2.3.5. We have that

(BR)N = conv(SN
R ) = abco

R
({−1, 1}N),

(BC)N = conv(SN
C ) ⊆ π

2
abco

C
({−1, 1}N).

Proof. The two equalities on the left follow from BK = conv(SK) and Lemma 2.3.3,
while the equality in the upper right follows from the fact that conv(SN

R ) is absolutely
convex.

For the inclusion, define the operator T : ℓ1N → ℓ∞({−1, 1}N) by

(Tx)(ϵ) =
N∑

n=1

ϵnxn

which has adjoint T ∗ : ℓ1({−1, 1}N) → ℓ∞N given by

(T ∗λ)n =
∑

ϵ∈{−1,1}N
λ(ϵ)ϵn.
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Consider the polar decomposition xn = |xn|e2πitn . Then,

∥Tx∥ℓ∞({−1,1}N ) = sup
ϵ∈{−1,1}N

sup
t∈[0,1)

∣∣∣∣∣Re

(
e2πit

N∑
n=1

ϵnxn

)∣∣∣∣∣
= sup

ϵ∈{−1,1}N
sup
t∈[0,1)

∣∣∣∣∣
N∑

n=1

ϵn|xn| cos(2π(tn + t))

∣∣∣∣∣
= sup

t∈[0,1)

N∑
n=1

|xn||cos(2π(tn + t))|

≥
∫ 1

0

N∑
n=1

|xn||cos(2π(tn + t))| dt

=
2

π

N∑
n=1

|xn|

=
2

π
∥x∥ℓ1N .

By the previous lemma, this implies that Bℓ∞N
⊆ π

2
T ∗Bℓ1({−1,1}N ), but the former is

conv(SN
C ) and the latter is π

2
abcoC({−1, 1}N).

Now, we use the characterizations of (BK)N in the previous lemma to prove the
following deterministic variant of Kahane’s contraction principle, which takes the
supremum over all ϵ ∈ (SK)N or {−1, 1}N . For the contraction principle, we will
replace this supremum with an expectation.

Lemma 2.3.6. For all sequences of scalars (an)Nn=1 and finite sequences (xn)Nn=1 in
X, ∥∥∥∥∥

N∑
n=1

anxn

∥∥∥∥∥
X

≤ max
1≤n≤N

|an| sup
ϵ∈(SK)N

∥∥∥∥∥
N∑

n=1

ϵnxn

∥∥∥∥∥
X

and ∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
X

≤ π

2
max

1≤n≤N
|an| sup

ϵ∈{−1,1}N

∥∥∥∥∥
N∑

n=1

ϵnxn

∥∥∥∥∥
X

.

Proof. We begin with the first part. By scaling and using homogeneity of the norm,
we can suppose without loss of generality that max1≤n≤N |an| = 1. Then, for n =
1, . . . , N , an ∈ conv(SK), so (an)Nn=1 ∈ conv(SN

K ). This means that there exist

25



λ1, . . . , λk ∈ [0, 1] summing to at most one and (ϵ
(1)
n )Nn=1, . . . , (ϵ

(k)
n )Nn=1 ∈ SN

K such
that

(an)Nn=1 =
k∑

j=1

λj(ϵ
(j)
n )Nn=1.

Now, we can compute∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
X

=

∥∥∥∥∥
N∑

n=1

k∑
j=1

λjϵ
(j)
n xn

∥∥∥∥∥
X

≤
k∑

j=1

λj

∥∥∥∥∥
N∑

n=1

ϵ(j)n xn

∥∥∥∥∥
X

≤
k∑

j=1

λj sup
ϵ∈(SK)N

∥∥∥∥∥
N∑

n=1

ϵnxn

∥∥∥∥∥
X

≤ sup
ϵ∈(SK)N

∥∥∥∥∥
N∑

n=1

ϵnxn

∥∥∥∥∥
X

,

which proves the first part.

Next, we prove the second part. Scaling once again, we can suppose without loss of
generality that max1≤n≤N |an| = 1. Then, using the same argument as the first part as
well as the inclusion statement from the previous lemma, (an)Nn=1 ∈ π

2
abcoC({−1, 1}N).

This means that there exist λ1, . . . , λk ∈ C with
∑k

j=1 |λj| ≤ π
2

and (ϵ
(1)
n )Nn=1, . . . , (ϵ

(k)
n )Nn=1 ∈

{−1, 1}N such that

(an)Nn=1 =
k∑

j=1

λj(ϵ
(j)
n )Nn=1.
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As before, we can compute∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
X

=

∥∥∥∥∥
N∑

n=1

k∑
j=1

λjϵ
(j)
n xn

∥∥∥∥∥
X

≤
k∑

j=1

|λj|

∥∥∥∥∥
N∑

n=1

ϵ(j)n xn

∥∥∥∥∥
X

≤
k∑

j=1

|λj| sup
ϵ∈{−1,1}N

∥∥∥∥∥
N∑

n=1

ϵnxn

∥∥∥∥∥
X

≤ π

2
sup

ϵ∈{−1,1}N

∥∥∥∥∥
N∑

n=1

ϵnxn

∥∥∥∥∥
X

,

which proves the second part.

Armed with this lemma, Kahane’s contraction principle follows rather easily.

Theorem 2.3.7 (Kahane’s contraction principle). For all sequences of scalars (an)Nn=1,
finite sequences (xn)Nn=1 in X, and p ∈ [1,∞],∥∥∥∥∥

N∑
n=1

anεnxn

∥∥∥∥∥
Lp(Ω;X)

≤ max
1≤n≤N

|an|

∥∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥∥
Lp(Ω;X)

,

where (εn)Nn=1 is a Rademacher sequence on a probability space Ω.

If X is a complex Banach space, then we also have that∥∥∥∥∥
N∑

n=1

anrnxn

∥∥∥∥∥
Lp(Ω;X)

≤ π

2
max

1≤n≤N
|an|

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
Lp(Ω;X)

,

where (rn)Nn=1 is a real Rademacher sequence on a probability space Ω.

Proof. For the first part, apply the first part of the previous lemma with Lp(Ω;X)
in place of X and εnxn in place of xn, then notice that the sequences (ϵnεn)Nn=1

and (εn)Nn=1 are identically distributed for any choice of (ϵn)Nn=1 with |ϵn| = 1 for
n = 1, . . . , N .

For the second part, apply the second part of the previous lemma with Lp(Ω;X) in
place of X and rnxn in place of xn, then notice that the sequences (ϵnrn)Nn=1 and
(rn)Nn=1 are identically distributed for any choice of (ϵn)Nn=1 ∈ {−1, 1}N .
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The second part of Kahane’s contraction principle gives rise to the following conve-
nient comparison between real and complex Rademacher sums, which we will use to
prove the Kahane-Khintchine inequalities in the next subsection and later to study
the impact of the underlying scalar field on the randomized UMD properties and
K-convexity.

Corollary 2.3.8. Let X be a complex Banach space and let (rn)Nn=1 and (εn)Nn=1 be
real and complex Rademacher sequences, respectively, on a probability space Ω. Then,
for all finite sequences (xn)Nn=1 in X and p ∈ (1,∞),

2

π

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
Lp(Ω;X)

≤

∥∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥∥
Lp(Ω;X)

≤ π

2

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
Lp(Ω;X)

.

Proof. As they do not appear in the same Lp(Ω;X)-norm, we can assume that (rn)Nn=1

and (εn)Nn=1 are defined on distinct probability spaces, Ω and Ω̃. For any ω̃ ∈ Ω̃,

2

π

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
Lp(Ω;X)

≤

∥∥∥∥∥
N∑

n=1

rnεn(ω̃)xn

∥∥∥∥∥
Lp(Ω;X)

≤ π

2

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
Lp(Ω;X)

,

using the second part of Kahane’s contraction principle with scalars εn(ω̃) and ele-

ments εn(ω̃)xn, then scalars εn(ω̃) and elements xn. Taking Lp(Ω̃)-norms and using
that the sequences (rnεn)Nn=1 and (εn)Nn=1 are identically distributed, we have the
desired inequalities.

This completes our study of Kahane’s contraction principle. In the next subsection,
we prove the Kahane-Khintchine inequalities.

2.3.2 Kahane-Khintchine inequalities

In this subsection, we prove the Kahane-Khintchine inequalities, whose content is
that the Lp and Lq-norms of Rademacher sums are comparable for distinct p, q ∈
[1,∞). Khintchine first proved the scalar-valued version in [Khi23], which Kahane
extended to the Banach space-valued setting in [Kah85]. The following proof is due
to [Gar07].

We begin with a classical tail estimate known as Lévy’s inequality.
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Lemma 2.3.9 (Lévy’s inequality). Let (Yn)Nn=1 be a finite sequence of independent,
real-symmetric1 X-valued random variables and let Sn =

∑n
k=1 Yk for n = 1, . . . N .

Then, for all r ≥ 0,

P
(

max
1≤n≤N

∥Sn∥X > r

)
≤ 2P (∥SN∥X > r) .

Proof. For n = 1, . . . , N , let

An := {∥S1∥ ≤ r, . . . , ∥Sn−1∥ ≤ r, ∥Sn∥ > r},

and note that the collection {An}Nn=1 is pairwise disjoint. Then, let

A :=
N⊔

n=1

An =

{
max

1≤n≤N
∥Sn∥ > r

}
.

Now, fix 1 ≤ n ≤ N . Notice that

Sn =
SN + (2Sn − SN)

2
,

which implies that

{∥Sn∥ > r} ⊆ {∥SN∥ > r} ∪ {∥2Sn − SN∥ > r}.

As each Yn is symmetric, (Y1, . . . , YN) and (Y1, . . . , Yn,−Yn+1, . . . ,−YN) are identi-
cally distributed. We have the identities

SN = Sn + Yn+1 + . . . + YN and 2Sn − SN = Sn − Yn+1 − . . .− YN ,

which imply that (Y1, . . . , Yn, SN) and (Y1, . . . , Yn, 2Sn − SN) are also identically dis-
tributed.

Combining these two facts,

P(An) ≤ P(An ∩ {∥SN∥ > r}) + P(An ∩ {∥2Sn − SN∥ > r}) = 2P(An ∩ {∥SN∥ > r}).

Summing over all n, we obtain

P(A) =
N∑

n=1

P(An) ≤ 2
N∑

n=1

P(An ∩ {∥SN∥ > r}) = 2P(∥SN∥ > r),

as desired.
1In the sense that Yn and −Yn are identically distributed for n = 1, . . . , N .
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Choosing Yn = rnxn, we can adapt this estimate to control the Lp-norm of real
Rademacher sums in particular, which will allow us to prove the Kahane-Khintchine
inequalities.

Lemma 2.3.10. For all finite sequences (xn)Nn=1 in X and r > 0,

P

(∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
X

> 2r

)
≤ 4P

(∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
X

> r

)2

,

where (rn)Nn=1 is a real Rademacher sequence on a probability space Ω.

Proof. For n = 1, . . . , N , let Sn =
∑n

k=1 rkxk and, as in the previous lemma,

An := {∥S1∥ ≤ r, . . . , ∥Sn−1∥ ≤ r, ∥Sn∥ > r}, .

Notice that (r1, . . . , rN) and (r1, . . . , rn, rnrn+1, . . . rnrN) are identically distributed
and that |rn| = 1 almost surely. Therefore, we can write

P(An ∩ {∥SN − Sn−1∥ > r}) = P

(
An ∩

{∥∥∥∥∥
N∑

k=n

rkxk

∥∥∥∥∥ > r

})

= P

(
An ∩

{∥∥∥∥∥rn
N∑

k=n

rkxk

∥∥∥∥∥ > r

})

= P

(
An ∩

{∥∥∥∥∥xn +
N∑

k=n+1

rnrkxk

∥∥∥∥∥ > r

})

= P

(
An ∩

{∥∥∥∥∥xn +
N∑

k=n+1

rkxk

∥∥∥∥∥ > r

})
= P (An ∩ {∥xn + SN − Sn∥ > r}) .

By the same argument, we also have that

P(∥SN − Sn−1∥ > r) = P(∥xn + SN − Sn∥ > r).

For any ω ∈ An, ∥Sn−1(ω)∥ ≤ r, so if ∥SN(ω)∥ > 2r, then ∥SN(ω) − Sn−1(ω)∥ > r.
As (rn)Nn=1 is a sequence of independent random variables, SN −Sn is independent of
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An, so

P(An ∩ {∥SN∥ > 2r}) ≤ P(An ∩ {∥SN − Sn−1∥ > r})

= P(An)P(∥xn + SN − Sn∥ > r)

= P(An)P(∥SN − Sn−1∥ > r)

≤ 2P(An)P(∥SN∥ > r),

where we use Lévy’s inequality for the final step.

Summing over n = 1, . . . , N and using Lévy’s inequality again,

P(∥SN∥ > 2r) =
N∑

n=1

P(An ∩ {∥SN∥ > 2r})

≤ 2
N∑

n=1

P(An)P(∥SN∥ > r)

= 2P
(

max
1≤n≤N

∥Sn∥ > r

)
P(∥SN∥ > r)

≤ 4P(∥SN∥ > r)2,

which is the inequality that we sought to prove.

This lemma enables us to prove the Kahane-Khintchine inequalities by computing
κp,1 for p > 1 and using Hölder’s inequality for the remaining cases.

Theorem 2.3.11 (Kahane-Khintchine inequalities). For all p, q ∈ [1,∞), there exists
a constant κp,q such that for any Banach space X and all finite sequences (xn)Nn=1 in
X, ∥∥∥∥∥

N∑
n=1

εnxn

∥∥∥∥∥
Lp(Ω;X)

≤ κp,q

∥∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥∥
Lq(Ω;X)

,

where (εn)Nn=1 is a Rademacher sequence on a probability space Ω.

Proof. By Corollary 2.3.8, it suffices to consider a real Rademacher sequence (rn)Nn=1,
and by Hölder’s inequality, it suffices to consider the case where p > 1 and q = 1.
Fix a finite sequence (xn)Nn=1 in X, let Yn = rnxn for all n = 1, . . . , N , and let
SN =

∑N
n=1 Yn. By scaling and using homogeneity, we can suppose without loss of

generality that E∥SN∥ = 1. Now, it remains to show that

E∥SN∥p ≤ κp,1.
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Let j ∈ N be such that 2j−1 < p ≤ 2j, which is unique. Successively applying the
previous lemma for r > 0, we find that

P(∥SN∥ > 2jr) ≤ 42j−1(P(∥SN∥ > r))2
j

.

By Markov’s inequality, P(∥SN∥ > r) ≤ 1
r
E∥SN∥ = 1

r
. Then, we can compute

E∥SN∥p =

∫ ∞

0

ptp−1P(∥SN∥ > t) dt

= 2jp

∫ ∞

0

prp−1P(∥SN∥ > 2jr) dr

≤ 2jp42j−1p

∫ ∞

0

rp−1P(∥SN∥ > r)2
j

dr

≤ (2p)p42p−1p

∫ ∞

0

rp−1P(∥SN∥ > r)p dr

≤ (2p)p42p−1p

∫ ∞

0

P(∥SN∥ > r) dr

= (2p)p42p−1pE∥SN∥
= (2p)p42p−1p,

which is a constant depending only on p.

The content of these inequalities is that, up to some constant, the Lp-norm of a
Rademacher sum is independent of the choice of p ∈ [1,∞). This will be enormously
useful to us when studying the plethora of Banach space properties characterized by
the behavior of Rademacher sums: the randomized UMD properties, for example, but
also K-convexity, type and cotype, and R-boundedness of operator families.

Before proceeding to the study of UMD spaces, we make note of a useful corollary of
the Kahane-Khintchine inequalities in the Hilbert space case, which matches Khint-
chine’s original inequality for scalars in [Khi23].

Corollary 2.3.12 (Khintchine’s inequality). For all p ∈ [1,∞), there exist constants
0 < Ap ≤ Bp < ∞ such that for any Hilbert space H and all finite sequences (hn)Nn=1

in H,

Ap

(
N∑

n=1

∥hn∥2H

) 1
2

≤

∥∥∥∥∥
N∑

n=1

εnhn

∥∥∥∥∥
Lp(Ω;H)

≤ Bp

(
N∑

n=1

∥hn∥2H

) 1
2

,

where (εn)Nn=1 is a Rademacher sequence on a probability space Ω.
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Proof. As (εn)Nn=1 is a sequence of independent, mean zero random variables,

E[εmεn] = E[εm]E[εm] = 0 · 0 = 0

for any m ̸= n, so (εn)Nn=1 is orthogonal in L2(Ω). For p = 2, it follows that∥∥∥∥∥
N∑

n=1

εnhn

∥∥∥∥∥
2

L2(Ω;H)

=
N∑

n=1

∥hn∥2H .

For p ̸= 2, the desired inequalities follow from the p = 2 case and the Kahane-
Khintchine inequalities.

This concludes our study of martingales in Banach spaces and Rademacher sequences.
With the probabilistic machinery that we have constructed, we are now prepared to
treat the properties of UMD, UMD+, and UMD− spaces, which we discuss in the
next chapter.
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Chapter 3

UMD and Randomized UMD
Spaces

After our discussion of martingales in Banach spaces and Rademacher sequences, we
can return to UMD and randomized UMD spaces. In this chapter, we will review the
definitions and fundamental results about the UMD and randomized UMD properties.
Then, we discuss basic constructions of UMD and randomized UMD spaces with sev-
eral important examples, including the spaces c0, ℓ

∞, ℓ1, and Lp. Finally, we mention
an application to the R-boundedness of conditional expectation operators.

3.1 Initialization

In this section, we restate the definitions of the UMD and randomized UMD proper-
ties. We also discuss the major results mentioned in the introduction, including the
proof that a Banach space is a UMD space if and only if it is a UMD+ space and
a UMD− space. Let us begin with a review of the definitions, now accounting for
p-independence given by Theorems 1.1.2 and 1.1.6.

Definition 1.1.1 (UMD). A Banach space X is called a UMD space if for some
(equivalently, for all) p ∈ (1,∞), there exists a constant β ∈ (0,∞) such that for any
Lp(S;X)-martingale difference sequence (dfn)Nn=1 on a σ-finite measure space (S,A, µ)
and scalars |ϵn| = 1, n = 1, . . . , N , we have∥∥∥∥∥

N∑
n=1

ϵndfn

∥∥∥∥∥
Lp(S;X)

≤ β

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

.
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Definition 1.1.4 (UMD+). A Banach space X is called a UMD+ space if for some
(equivalently, for all) p ∈ (1,∞), there exists a constant β+ ∈ (0,∞) such that
for any Lp(S;X)-martingale difference sequence (dfn)Nn=1 on a σ-finite measure space
(S,A, µ), we have ∥∥∥∥∥

N∑
n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ β+

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

where (εn)Nn=1 is a Rademacher sequence on a probability space Ω.

Definition 1.1.5 (UMD−). A Banach space X is called a UMD− space if for some
(equivalently, for all) p ∈ (1,∞), there exists a constant β+ ∈ (0,∞) such that
for any Lp(S;X)-martingale difference sequence (dfn)Nn=1 on a σ-finite measure space
(S,A, µ), we have ∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤ β−

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

where (εn)Nn=1 is a Rademacher sequence on a probability space Ω.

Although the definition of UMD appears to more closely resemble that of UMD+ than
that of UMD−, its defining inequality can be reversed. If (dfn)Nn=1 is a martingale
difference sequence, (ϵndfn)Nn=1 is as well. For a UMD space X, this gives the reverse
inequality ∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤ β

∥∥∥∥∥
N∑

n=1

ϵndfn

∥∥∥∥∥
Lp(S;X)

,

which resembles the defining inequality for the UMD− property.

As we discussed in the introduction, each condition is satisfied for all p ∈ (1,∞) if it
is satisfied by some, a result of [Mau75, Bur81] for UMD and [Gar90, Theorem 4.1] for
UMD+ and UMD−. For UMD spaces, this can be shown by reducing to martingales
adapted to Walsh-Paley filtrations : those in which each set in Fn is a union of atoms
of measure 2−n. It is unknown whether the same reduction can be done for UMD+

and UMD−. See [CG21, Theorem 1.4] for a recent partial result.

Nevertheless, we still care to distinguish between different choices of p because they
lead to different optimal constants. If a Banach space X is UMD, we denote by βp(X)
the infimum over all admissible β for the particular choice of p. The same holds for
β+
p (X) for UMD+ and β−

p (X) for UMD−.
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Now, we proceed to restate and finally prove Theorem 1.1.3.

Theorem 1.1.3. A Banach space X is a UMD space if and only if it is a UMD+

space and a UMD− space.

Proof. Suppose that X is a UMD space and fix p ∈ (1,∞), so that

1

βp(X)

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤

∥∥∥∥∥
N∑

n=1

ϵndfn

∥∥∥∥∥
Lp(S;X)

≤ βp(X)

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

for any Lp(S;X)-martingale difference sequence (dfn)Nn=1 and any sequence of scalars
(ϵn)Nn=1 with |ϵ| = 1 for n = 1, . . . , N . In particular, for a Rademacher sequence
(εn)Nn=1 on a probability space Ω,

1

βp(X)

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤

∥∥∥∥∥
N∑

n=1

εn(ω)dfn

∥∥∥∥∥
Lp(S;X)

≤ βp(X)

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

for any ω ∈ Ω. Taking the Lp(Ω)-norm, this yields the randomized UMD properties
with constants β+ = β− = βp(X).

For the converse, suppose that X is UMD+ and UMD−, then fix p ∈ (1,∞). Let
(dfn)Nn=1 be an Lp(S;X)-martingale difference sequence and let (ϵn)Nn=1 be a sequence
of scalars with |ϵ| = 1 for n = 1, . . . , N . Then, using for the equality that (ϵnεn)Nn=1

and (εn)Nn=1 are identically distributed,

1

β−
p (X)

∥∥∥∥∥
N∑

n=1

ϵndfn

∥∥∥∥∥
Lp(S;X)

≤

∥∥∥∥∥
N∑

n=1

ϵnεndfn

∥∥∥∥∥
Lp(S×Ω;X)

=

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ β+
p (X)

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

,

so X is a UMD space with constant β = β−
p (X)β+

p (X).

It is easy to see from the proof of Theorem 1.1.3 that

β−
p (X), β+

p (X) ≤ βp(X) ≤ β−
p (X)β+

p (X).
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We mentioned in the introduction that Theorem 1.1.3 can be used to establish a
quantitative relationship between UMD constants and the operator norm ℏp(X) :=
∥H∥Lp(R;X)→Lp(R;X) of the Hilbert transform H. As shown in [Gar86], it holds that

ℏp(X) ≤ β+
p (X)β−

p (X).

If the conjecture that UMD and UMD+ are equivalent is true, one possible proof may
involve eliminating the dependence on β−

p (X) in the inequality above.

During the rest of this chapter, we will discuss constructions and properties which
follow directly from the definitions given in this section.

3.2 Properties

The remainder of this chapter concerns various constructions, properties, and coun-
terexamples of both UMD+ and UMD− spaces. We begin this section with some
basic constructions, then proceed to show that the underlying scalar field does not
qualitatively affect the UMD+ or UMD− properties, prove a duality result, and finally
discuss finite representability.

3.2.1 Basic constructions

We begin this section with the most basic constructions of UMD+ and UMD− spaces.
First, we prove that all Hilbert spaces are UMD spaces (and thus both UMD+ and
UMD− spaces).

Proposition 3.2.1. Every Hilbert space H is a UMD space with β2(H) = 1.

Proof. Let (dfn)Nn=1 be an H-valued Lp-martingale difference sequence on a σ-finite
measure space (S,A, µ). By Proposition 2.2.4, (dfn)Nn=1 is mutually orthogonal and∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
L2(S;H)

=

(
N∑

n=1

∥dfn∥2L2(S;H)

) 1
2

.

As (dfn)Nn=1 is a martingale difference sequence, (ϵndfn)Nn=1 is as well, so the same
identity holds. Therefore,∥∥∥∥∥

N∑
n=1

ϵndfn

∥∥∥∥∥
L2(S;H)

=

(
N∑

n=1

∥dfn∥2L2(S;H)

) 1
2

=

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
L2(S;H)

,
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which shows that H is a UMD space and β2(H) = 1.

In particular, the scalar fields R and C are UMD spaces. Once we provide examples
of UMD+ and UMD− spaces which are not Hilbert spaces, it will be reasonable to
think of the UMD and randomized UMD properties as particular generalizations of
Hilbert spaces to include a wider class of Banach spaces. The motivation for this
perspective comes from the discussion following Proposition 2.2.4.

Next, we prove that both UMD+ and UMD− (thus also UMD) are preserved under
isomorphisms and the taking of closed subspaces. These two basic methods for con-
structing new UMD+ and UMD− spaces from existing ones follow directly from the
definitions of the randomized UMD properties.

Proposition 3.2.2. If X is a UMD+ (resp. UMD−) space and Y is isomorphic to
X via J : X → Y , then Y is a UMD+ (resp. UMD−) space with

β±
p (Y ) ≤ ∥J∥∥J−1∥ β±

p (X).

Proof. Identifying Y -valued martingales with X-valued martingales via the isomor-
phism J , this follows directly from the definitions of the randomized UMD proper-
ties.

Proposition 3.2.3. If X is a UMD+ (resp. UMD−) space and Y is a closed subspace
of X, then Y is also a UMD+ (resp. UMD−) space with β±

p (Y ) ≤ β±
p (X).

Proof. Any Y -valued martingale is also an X-valued martingale, so this follows di-
rectly from the definitions of the randomized UMD properties.

3.2.2 Underlying scalar field

So far, we have used for the UMD+ and UMD− properties Rademacher sequences
which take values in the underlying scalar field of the relevant Banach space. As
we will see, these properties are actually independent of the choice of scalar field.
Using real Rademacher sequences is sufficient to show that a complex Banach space
is UMD+ or UMD−.

For a complex Banach space X, denote by XR the Banach space obtained by re-
stricting scalar multiplication to real numbers. As we will see, the UMD+ and UMD
properties hold for X if and only if they hold for XR. Corollary 2.3.8, which was a
consequence of Kahane’s contraction principle, makes the proof simple.
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Proposition 3.2.4. Let X be a complex Banach space and let p ∈ (1,∞). X is a
UMD+ (resp. UMD−) space if and only if XR is a UMD+ (resp. UMD−) space. In
that case,

2

π
β±
p (XR) ≤ β±

p (X) ≤ π

2
β±
p (XR).

Proof. If X is a UMD+ space, then for a real Rademacher sequence (rn)Nn=1 and an
Lp(S;X)-martingale difference sequence (dfn)Nn=1,∥∥∥∥∥

N∑
n=1

rndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ π

2

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ π

2
β+
p (X)

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

,

using Corollary 2.3.8, so XR is a UMD+ space with β+
p (XR) ≤ π

2
β+
p (X).

If XR is a UMD+ space, then for a complex Rademacher sequence (εn)Nn=1 and an
Lp(S;X)-martingale difference sequence (dfn)Nn=1,∥∥∥∥∥

N∑
n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ π

2

∥∥∥∥∥
N∑

n=1

rndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ π

2
β+
p (XR)

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;X)

,

using Corollary 2.3.8, so X is a UMD+ space with β+
p (X) ≤ π

2
β+
p (XR).

If X is a UMD− space, then for a real Rademacher sequence (rn)Nn=1 and an Lp(S;X)-
martingale difference sequence (dfn)Nn=1,∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤ β−
p (X)

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ π

2
β−
p (X)

∥∥∥∥∥
N∑

n=1

rndfn

∥∥∥∥∥
Lp(S×Ω;X)

,

using Corollary 2.3.8, so XR is a UMD− space with β−
p (XR) ≤ π

2
β−
p (X).

If XR is a UMD− space, then for a complex Rademacher sequence (εn)Nn=1 and an
Lp(S;X)-martingale difference sequence (dfn)Nn=1,∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤ β−
p (X)

∥∥∥∥∥
N∑

n=1

rdfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ π

2
β−
p (X)

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

,

using Corollary 2.3.8, so X is a UMD− space with β−
p (X) ≤ π

2
β−
p (XR).
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This equivalence will later allow us to use the UMD+ or UMD− property of XR when
we are given that X is a UMD+ or UMD− space. This will be especially useful when
studying K-convexity, which we define in a way that is independent of the choice of
scalar field K.

Note that this equivalence also holds for the UMD property and its associated con-
stants. We can show the same relationship by considering UMD+ and UMD− sep-
arately, then using that the randomized UMD properties are together equivalent to
UMD by Theorem 1.1.3. In fact, if X is a UMD space, we can consider only real
ϵ1, . . . , ϵN in the definition to conclude that XR is also a UMD space and βp(XR) ≤
βp(X) without the factor of π

2
. The second inequality, βp(X) ≤ π

2
βp(XR), remains

unchanged.

3.2.3 Duality

The first distinct result about UMD+ and UMD− spaces is that they are almost dual
to each other. [Gar90, Theorem 3.1] gives us that the dual and predual (if it exists)
of a UMD+ space X are UMD− spaces. If X is also a UMD− space (hence a UMD
space), then the dual and predual (if it exists) are UMD spaces as well.

Proposition 3.2.5. If X is a UMD+ space, then its dual X∗ is a UMD− space with
β−
p′(X

∗) ≤ β+
p (X). If X∗ is a UMD+ space, then its predual X is a UMD− space with

β−
p′(X) ≤ β+

p (X∗).

Proof. Suppose that X is a UMD+ space. Let (ϕn)Nn=1 be an Lp′(S;X∗)-martingale
adapted to the filtration (Fn)Nn=1. Fix an arbitrary f ∈ Lp(S,FN ;X) such that
∥f∥Lp(S;X) = 1, then define the Lp(S;X)-martingale (fn)Nn=1 by fn = E[f | Fn] so
that fN = f . For 1 ≤ m < n ≤ N , we can compute

E ⟨dfm, dϕn⟩ = EE[⟨dfm, dϕn⟩ | Fn−1] = E ⟨dfm,E[dϕn | Fn−1]⟩ = 0,

and E ⟨dfm, dϕn⟩ = 0 for 1 ≤ n < m ≤ N by a similar argument.
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Therefore,∣∣∣∣∣E
〈
f,

N∑
n=1

dϕn

〉∣∣∣∣∣ =

∣∣∣∣∣E
〈

N∑
m=1

dfm,
N∑

n=1

dϕn

〉∣∣∣∣∣
=

∣∣∣∣∣E
〈

N∑
m=1

εmdfm,
N∑

n=1

εndϕn

〉∣∣∣∣∣
≤

∥∥∥∥∥
N∑

m=1

εmdfm

∥∥∥∥∥
Lp(S×Ω;X)

∥∥∥∥∥
N∑

n=1

εndϕn

∥∥∥∥∥
Lp′ (S×Ω;X∗)

≤ β+
p (X)

∥∥∥∥∥
N∑

m=1

dfm

∥∥∥∥∥
Lp(S;X)

∥∥∥∥∥
N∑

n=1

εndϕn

∥∥∥∥∥
Lp′ (S×Ω;X∗)

= β+
p (X)∥f∥Lp(S;X)

∥∥∥∥∥
N∑

n=1

εndϕn

∥∥∥∥∥
Lp′ (S×Ω;X∗)

= β+
p (X)

∥∥∥∥∥
N∑

n=1

εndϕn

∥∥∥∥∥
Lp′ (S×Ω;X∗)

.

Now, Lp(S,FN ;X) is norming for Lp′(S,FN ;X∗), so we can take the supremum over
all f ∈ Lp(S,FN ;X) with ∥f∥Lp(S;X) = 1 to obtain∥∥∥∥∥

N∑
n=1

dϕn

∥∥∥∥∥
Lp′ (S;X∗)

≤ β+
p (X)

∥∥∥∥∥
N∑

n=1

εndϕn

∥∥∥∥∥
Lp′ (S×Ω;X∗)

.

That is, X∗ is a UMD− space with β−
p′(X

∗) ≤ β+
p (X).

Now, suppose instead that X∗ is a UMD+ space. Applying the result above, we find
that X∗∗ is a UMD− space with β−

p′(X
∗∗) ≤ β+

p (X∗). X is isometric to a closed
subspace of X∗∗, so by Propositions 3.2.2 and 3.2.3, X is also a UMD− space with
β−
p′(X) ≤ β−

p′(X
∗∗) ≤ β+

p (X∗).

This proposition is weaker than we might like it to be, as the dual and predual of
a UMD− space are not necessarily UMD+. As we will later see in Examples 3.3.2
and 3.3.3, ℓ1 is a UMD− space, but its predual c0 and dual ℓ∞ are neither UMD− nor
UMD+.
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If we require that X is also a UMD− space (hence UMD), this problem is solved:
the following proposition shows that the dual and predual (if it exists) of a UMD
space are also UMD spaces. The proof is almost identical to that of the previous
proposition.

Proposition 3.2.6. A Banach space X is a UMD space if and only if its dual X∗ is
also a UMD space. In that case, βp′(X

∗) = βp(X).

Proof. Suppose that X is a UMD space. Let (ϕn)Nn=1 be an Lp′(S;X∗)-martingale
adapted to the filtration (Fn)Nn=1. Fix an arbitrary f ∈ Lp(S,FN ;X) such that
∥f∥Lp(S;X) = 1, then define the Lp(S;X)-martingale (fn)Nn=1 by fn = E[f | Fn] so
that fN = f . For 1 ≤ m < n ≤ N , we can compute

E ⟨dfm, dϕn⟩ = EE[⟨dfm, dϕn⟩ | Fn−1] = E ⟨dfm,E[dϕn | Fn−1]⟩ = 0,

and E ⟨dfm, dϕn⟩ = 0 for 1 ≤ n < m ≤ N by a similar argument.

Therefore, ∣∣∣∣∣E
〈
f,

N∑
n=1

ϵndϕn

〉∣∣∣∣∣ =

∣∣∣∣∣E
〈

N∑
m=1

dfm,
N∑

n=1

ϵndϕn

〉∣∣∣∣∣
=

∣∣∣∣∣E
〈

N∑
m=1

ϵmdfm,
N∑

n=1

dϕn

〉∣∣∣∣∣
≤

∥∥∥∥∥
N∑

m=1

ϵmdfm

∥∥∥∥∥
Lp(S;X)

∥∥∥∥∥
N∑

n=1

dϕn

∥∥∥∥∥
Lp′ (S;X∗)

≤ βp(X)

∥∥∥∥∥
N∑

m=1

dfm

∥∥∥∥∥
Lp(S;X)

∥∥∥∥∥
N∑

n=1

dϕn

∥∥∥∥∥
Lp′ (S;X∗)

= βp(X)∥f∥Lp(S;X)

∥∥∥∥∥
N∑

n=1

dϕn

∥∥∥∥∥
Lp′ (S;X∗)

= βp(X)

∥∥∥∥∥
N∑

n=1

dϕn

∥∥∥∥∥
Lp′ (S;X∗)

.

Now, Lp(S,FN ;X) is norming for Lp′(S,FN ;X∗), so we can take the supremum over

42



all f ∈ Lp(S,FN ;X) with ∥f∥Lp(S;X) = 1 to obtain∥∥∥∥∥
N∑

n=1

ϵndϕn

∥∥∥∥∥
Lp′ (S;X∗)

≤ βp(X)

∥∥∥∥∥
N∑

n=1

dϕn

∥∥∥∥∥
Lp′ (S;X∗)

.

That is, X∗ is a UMD space with βp′(X
∗) ≤ βp(X).

This result applied to X∗ and X∗∗ gives that X∗∗ is also a UMD space and βp(X
∗∗) ≤

βp′(X
∗). X is isometric to a closed subspace of X∗∗, so by Propositions 3.2.2 and 3.2.3,

it is also a UMD space with βp(X) ≤ βp(X
∗∗) ≤ βp′(X

∗). Combining this result with
the first inequality in this paragraph, we find that βp′(X

∗) = βp(X).

3.2.4 Finite representability

In this subsection, we briefly discuss the finite representability of Banach spaces in
one another as well as the notion of super-properties. First, we define finite repre-
sentability, which was first described in [Jam72a, Jam72b].

Definition 3.2.7 (Finitely representable). A Banach space Y is said to be finitely
representable in a Banach space X if, for every ϵ > 0 and every finite-dimensional
subspace Y0 ⊆ Y , there exists a finite-dimensional subspace X0 ⊆ X and a linear
isomorphism J : Y0 → X0 such that

∥J∥∥J−1∥ ≤ 1 + ϵ.

With this definition, we call a property which a Banach space may or may not satisfy
(e.g. reflexivity, UMD, K-convexity) a super-property if it is preserved under finite
representability. That is, if a Banach space X satisfying the property and another
Banach space Y being finitely representable in X implies that Y also satisfies the
property, it is a super-property.

By Lemma 2.2.5, we can estimate arbitrary martingales by simple martingales sup-
ported on a finite measure set. Therefore, when treating the UMD+ and UMD−

properties for a Banach space X, we need only consider simple martingales whose
images are contained in finite-dimensional subspaces of X. For this reason, both
UMD+ and UMD− (and thus UMD as well) are super-properties.

43



3.3 Fundamental examples

Having demonstrated several basic constructions of new UMD+ and UMD− spaces
from existing ones, we continue by mentioning some important examples of UMD+

and UMD− spaces. In the first subsection, we test whether some sequence spaces (c0,
ℓ∞, and ℓ1) satisfy the UMD+ or UMD− properties. In the second, we prove that
certain Lp spaces are UMD+ and UMD− spaces.

3.3.1 Sequence spaces

Our first fundamental example is actually a pair of counterexamples. We now prove
that the sequence spaces c0 and ℓ∞ are neither UMD+ not UMD−. We begin with
an estimate for the randomized UMD constants of the finite-dimensional space ℓ∞2N ,
which we will proceed to embed in c0 and ℓ∞. The estimate for β−

p (ℓ∞2N ) is due
to [Gar90, Section 3], while that for β+

p (ℓ∞2N ) is an adaptation of the same argu-
ment. For discussion of the tightest asymptotics for these constants, see [PW98] and
[Wen05].

Lemma 3.3.1. Let N ∈ N and p ∈ (1,∞). Then,

β+
p (ℓ∞2N ) ≥ c+p

√
N, β−

p (ℓ∞2N ) ≥ c−p
√
N

for some constants c+p , c
−
p > 0 depending only on p.

Proof. Let D = {−1, 1}N equipped with the uniform probability measure µ. For
n = 1, . . . , N , consider the functions on D ×D given by

dn(s, t) =


+1 if sj = tj for j ≤ n

−1 if sj = tj for j < n and sn ̸= tn

0 if sj ̸= tj for some j < n.

For any fixed t ∈ D, we have that (s 7→ dn(s, t))Nn=1 is an Lp(D)-martingale difference
sequence. Therefore, (s 7→ (dn(s, t))t∈D)Nn=1 is an Lp(D; ℓ∞(D))-martingale difference
sequence.

Let (εn)Nn=1 be a Rademacher sequence. Then, we can estimate∣∣∣∣∣
N∑

n=1

εndn(s, t)

∣∣∣∣∣ ≤ sup
1≤M≤N

∣∣∣∣∣
M∑
n=1

εn + εM+11{M<N}

∣∣∣∣∣ ≤ S∗
N + 1,
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where Sn =
∑n

j=1 εj.

Taking Lp(Ω ×D; ℓ∞(D))-norms (with respect to the variable s),∥∥∥∥∥
N∑

n=1

εndn(s, ·)

∥∥∥∥∥
Lp(Ω×D;ℓ∞(D))

≤ ∥S∗
N∥Lp(Ω) + 1 ≤ p′∥SN∥Lp(Ω) + 1 ≤ Cp

√
N,

for some constant Cp > 0, where we use Doob’s maximal inequality followed by
Khintchine’s inequality.

Now, using that dn(s, s) = 1, the definition of the UMD− constant, and the previous
inequality, we find that

N = inf
s∈D

∣∣∣∣∣
N∑

n=1

dn(s, s)

∣∣∣∣∣
≤

∥∥∥∥∥
N∑

n=1

dn(s, ·)

∥∥∥∥∥
Lp(D;ℓ∞(D))

≤ β−
p (ℓ∞(D))

∥∥∥∥∥
N∑

n=1

εndn(s, ·)

∥∥∥∥∥
Lp(Ω×D;ℓ∞(D))

≤ β−
p (ℓ∞(D))Cp

√
N,

so β−
p (ℓ∞(D)) ≥ C−1

p

√
N . Writing c−p = C−1

p and identifying ℓ∞(D) ∼= ℓ∞2N , Proposi-
tion 3.2.2 gives us the desired result.

Similarly, since dn(s, s) = 1, we have that∥∥∥∥∥
N∑

n=1

εndn(s, ·)

∥∥∥∥∥
Lp(Ω×D;ℓ∞(D))

≥ ∥SN∥Lp(Ω) ≥ cp
√
N,

for some constant cp > 0, where we once again use Khintchine’s inequality. As
(εn(−1)n)Nn=1 is still a Rademacher sequence, we can replace εndn(s, ·) with εn(−1)ndn(s, ·)
in these inequalities.

Now, we claim that for s, t ∈ D,∣∣∣∣∣
N∑

n=1

(−1)ndn(s, t)

∣∣∣∣∣ ≤ 2.
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For the proof, let M ∈ {1, . . . , N} be the maximum such that sj = tj for j ≤ M . By
construction of (dn)Nn=1, this implies that dn(s, t) = 1 for n ≤ M , dM+1(s, t) = −1 if
M < N , and dn(s, t) = 0 for n > M + 1. Therefore,∣∣∣∣∣

N∑
n=1

(−1)ndn(s, t)

∣∣∣∣∣ =

∣∣∣∣∣
M∑
n=1

(−1)n · 1 + (−1)M+1 · (−1) · 1{M<N}

∣∣∣∣∣
=
∣∣(−1)1{M odd} + (−1)M1{M<N}

∣∣
≤ 2.

Using our previous two inequalities and the definition of the UMD+ constant,

cp
√
N ≤

∥∥∥∥∥
N∑

n=1

εn(−1)ndn(s, ·)

∥∥∥∥∥
Lp(Ω×D;ℓ∞(D))

≤ β+
p (ℓ∞(D))

∥∥∥∥∥
N∑

n=1

(−1)ndn(s, ·)

∥∥∥∥∥
Lp(D;ℓ∞(D))

≤ β+
p (ℓ∞(D)) sup

s,t∈D

∣∣∣∣∣
N∑

n=1

(−1)ndn(s, t)

∣∣∣∣∣
≤ 2β+

p (ℓ∞(D)),

so β+
p (ℓ∞(D)) ≥ cp

√
N/2. Writing c+p = cp/2 and identifying ℓ∞(D) ∼= ℓ∞2N , Proposi-

tion 3.2.2 gives us the desired result.

Embedding ℓ∞2N in c0 and ℓ∞, we can use these bounds on β±
p (ℓ∞2N ) to show that

neither c0 nor ℓ∞ is UMD− or UMD+. Clearly, this also implies that neither space is
UMD.

Example 3.3.2. The sequence spaces c0 and ℓ∞ are not UMD− or UMD+ spaces.

Proof. Fix N ∈ N. By identifying sequences in ℓ∞2N with the first 2N coordinates of
sequences in c0, ℓ

∞
2N is a closed subspace of c0 (which is in turn a closed subspace of

ℓ∞). Using Proposition 3.2.3 and the previous lemma,

β+
p (ℓ∞) ≥ β+

p (c0) ≥ β+
p (ℓ∞2N ) ≥ c+p

√
N, β−

p (ℓ∞) ≥ β−
p (c0) ≥ β−

p (ℓ∞2N ) ≥ c−p
√
N.

This holds for all N ∈ N, so both pairs of randomized UMD constants are infinite
and neither c0 nor ℓ∞ is UMD+ or UMD−.
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The space ℓ1 leads to a slightly different situation. As we saw was the case for c0 and
ℓ∞, we will find that ℓ1 fails the UMD+ property. However, unlike the other sequence
spaces, ℓ1 is a UMD− space.

Example 3.3.3. The sequence space ℓ1 is a UMD− space but is not a UMD+ space.

Proof. If ℓ1 were UMD+, then Propositions 3.2.2 and 3.2.5 would give that ℓ∞ = (ℓ1)∗

is UMD−, but we showed that this is not the case in Example 3.3.2. Therefore, ℓ1 is
not a UMD+ space.

For UMD−, let (fn)Nn=1 be an L2(S; ℓ1)-martingale for a σ-finite measure space (S,A, µ).
Taking the L2(S; ℓ1)-norm of fN , we can then bound∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
L2(S;ℓ1)

=

∥∥∥∥∥
∞∑
t=1

∣∣∣∣∣
N∑

n=1

dfn(t)

∣∣∣∣∣
∥∥∥∥∥
L2(S)

≤
∞∑
t=1

∥∥∥∥∥
N∑

n=1

dfn(t)

∥∥∥∥∥
L2(S)

=
∞∑
t=1

∥∥∥∥∥∥
(

N∑
n=1

|dfn(t)|2
) 1

2

∥∥∥∥∥∥
L2(S)

≤ 1

A1

∞∑
t=1

∥∥∥∥∥
N∑

n=1

εndfn(t)

∥∥∥∥∥
L1(S×Ω)

=
1

A1

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
L1(S×Ω;ℓ1)

≤ κ1,2

A1

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
L2(S×Ω;ℓ1)

,

where we use the triangle inequality, Proposition 2.2.4, Khintchine’s inequality, and
the Kahane-Khintchine inequalities. It follows that ℓ1 is a UMD− space.

Note that this example also implies that any Banach space which is finitely repre-
sentable in ℓ1 is also a UMD− space, by the discussion in Subsection 3.2.4.

As ℓ1 is not a UMD+ space, it is not a UMD space. We conclude that UMD− is
a strictly weaker property than UMD. It remains open whether UMD+ is strictly

47



weaker than UMD, as it is unknown whether there exist any UMD+ spaces which are
not also UMD− (hence UMD).

Intuitively, one can consider c0 to be a barrier to both UMD− and UMD+ and ℓ1

to be a barrier to UMD+ in the sense that we can embed them into many classical
Banach spaces to demonstrate that they fail one or both of the randomized UMD
properties.

For example, C([0, 1]) and L∞([0, 1]) contain isometric copies of c0, so they are neither
UMD− nor UMD+. L1([0, 1]) contains an isometric copy of ℓ1, so it is not a UMD+

space. However, L1([0, 1]) is finitely representable in ℓ1, so it is actually a UMD−

space. We will generalize the example of L1([0, 1]) in Proposition 3.3.5.

3.3.2 Lp spaces

After proving Proposition 3.2.1, we mentioned that UMD, UMD+, and UMD− spaces
can be considered as particular generalizations of Hilbert spaces. Example 3.3.3
demonstrates that ℓ1 is a UMD− spaces, so we know that UMD− spaces are an
intermediate between Hilbert and general Banach spaces. It remains to show the
existence of UMD+ and UMD spaces which are not Hilbert spaces. The clearest
examples are Lp spaces. First, we treat the UMD+ property.

Proposition 3.3.4. Let (T,B, ν) be a σ-finite measure space and let X be a UMD+

space. For all p ∈ (1,∞), Lp(T ;X) is a UMD+ space with β+
p (Lp(T ;X)) = β+

p (X).

Proof. Let (dfn)Nn=1 be an Lp(T ;X)-valued Lp-martingale difference sequence on a σ-
finite measure space (S,A, µ). Under the identification Lp(S;Lp(T ;X)) ∼= Lp(T ;Lp(S;X)),

ELp(T ;X)[· | Fn] = ELp(T )[· | Fn] ⊗ IX ,

so for ν-almost all t ∈ T , dfn(t) is an Lp(S;X)-martingale difference sequence. There-
fore, we can use the UMD+ property for X to write that∥∥∥∥∥

N∑
n=1

εndfn(t)

∥∥∥∥∥
Lp(S×Ω;X)

≤ β+
p (X)

∥∥∥∥∥
N∑

n=1

dfn(t)

∥∥∥∥∥
Lp(S;X)

ν-almost everywhere.
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Then, using Fubini’s theorem in the first and final steps,

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;Lp(T ;X))

=

∫
T

∥∥∥∥∥
N∑

n=1

εndfn(t)

∥∥∥∥∥
p

Lp(S×Ω;X)

dν(t)

 1
p

≤

∫
T

β+
p (X)p

∥∥∥∥∥
N∑

n=1

dfn(t)

∥∥∥∥∥
p

Lp(S;X)

dν(t)

 1
p

= β+
p (X)

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;Lp(T ;X))

,

so Lp(T ;X) is a UMD+ space with β+
p (Lp(T ;X)) ≤ β+

p (X).

For equality, let f ∈ Lp(T ) with ∥f∥Lp(T ) = 1. Then, x 7→ f ⊗ x is an isometric

embedding of X into Lp(T ;X), which implies that β+
p (X) ≤ β+

p (Lp(T ;X)). All
together, we find that Lp(T ;X) is a UMD+ space with β+

p (Lp(T ;X)) = β+
p (X).

In particular, as Proposition 3.2.1 gives us that R and C are UMD spaces, the previous
proposition implies that, for σ-finite T and p ∈ (1,∞), Lp(T ) is a UMD+ space.

A similar statement (with similar proof) holds for the UMD− property. However, we
actually have a broader result: for a UMD− space X, L1(T ;X) is also a UMD− space.
As we saw (in Example 3.3.3 and the following discussion), the same does not hold
for the UMD+ property, and hence for the standard UMD property.

Proposition 3.3.5. Let (T,B, ν) be a σ-finite measure space and let X be a UMD−

space. For all p ∈ [1,∞), Lp(T ;X) is a UMD− space with β−
p (Lp(T ;X)) = β−

p (X).

Proof. First, suppose that p ∈ (1,∞); this case is very similar to the previous
proposition. Let (dfn)Nn=1 be an Lp(T ;X)-valued Lp-martingale difference sequence
on a σ-finite measure space (S,A, µ). Under the identification Lp(S;Lp(T ;X)) ∼=
Lp(T ;Lp(S;X)),

ELp(T ;X)[· | Fn] = ELp(T )[· | Fn] ⊗ IX ,

so for ν-almost all t ∈ T , dfn(t) is an Lp(S;X)-martingale difference sequence. There-
fore, we can use the UMD− property for X to write that∥∥∥∥∥

N∑
n=1

dfn(t)

∥∥∥∥∥
Lp(S;X)

≤ β−
p (X)

∥∥∥∥∥
N∑

n=1

εndfn(t)

∥∥∥∥∥
Lp(S×Ω;X)
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ν-almost everywhere.

Then, using Fubini’s theorem in the first and final steps,

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lp(S;Lp(T ;X))

=

∫
T

∥∥∥∥∥
N∑

n=1

dfn(t)

∥∥∥∥∥
p

Lp(S;X)

dν(t)

 1
p

≤

∫
T

β−
p (X)p

∥∥∥∥∥
N∑

n=1

εndfn(t)

∥∥∥∥∥
p

Lp(S×Ω;X)

dν(t)

 1
p

= β−
p (X)

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;Lp(T ;X))

so Lp(T ;X) is a UMD− space with β−
p (Lp(T ;X)) ≤ β−

p (X).

For equality, let f ∈ Lp(T ) with ∥f∥Lp(T ) = 1. Then, x 7→ f ⊗ x is an isometric

embedding of X into Lp(T ;X), which implies that β−
p (X) ≤ β−

p (Lp(T ;X)). All
together, we find that Lp(T ;X) is a UMD− space with β−

p (Lp(T ;X)) = β−
p (X).

For the case where p = 1, L1(T ;X) is finitely representable in ℓ1 (see [AK06, Propo-
sition 11.1.7]), so using Example 3.3.3 and the discussion in Subsection 3.2.4, it is
also a UMD− space.

As with UMD+, this implies that Lp(T ) is a UMD− space if T is σ-finite and
p ∈ [1,∞). Combining the two propositions, the result holds when considering the
standard UMD property as well.

Corollary 3.3.6. Let (T,B, ν) be a σ-finite measure space and let X be a UMD space.
For all p ∈ (1,∞), Lp(T ;X) is a UMD space with βp(L

p(T ;X)) = βp(X).

In fact, the above propositions hold even for a non-σ-finite measure space (T,B, ν).
In that case, we would use Lemma 2.2.5 to reduce to simple martingales which are
adapted to filtrations of finite σ-algebras, after which the above argument would show
that Lp(T ;X) is UMD+ or UMD− for appropriate p.

3.4 R-boundedness

Now, we take a detour from our study of randomized UMD spaces to mention an
important application of the theory that we have developed. As we have discussed,
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UMD and randomized UMD spaces are generalizations of Hilbert spaces that include
a broader array of Banach spaces. Similarly, many results about families of bounded
operators on Hilbert spaces extend to more general classes of Banach spaces if we
replace uniform boundedness with a probabilistic analogue: R-boundedness.

This property of a family of operators is due to [BG94], which drew inspiration
from [Bou86]. As we will see, R-boundedness resembles and is closely tied to the
UMD property, but we frequently only need UMD+ in order to show that a family
of operators is R-bounded. Let us define the notion of an R-bounded family of
operators.

Definition 3.4.1 (R-bounded). Let X and Y be Banach spaces and let T be a family
of bounded linear operators from X to Y . T is said to be R-bounded if for some
p ∈ [1,∞), there exists a finite constant R ≥ 0 such that∥∥∥∥∥

N∑
n=1

εnTnxn

∥∥∥∥∥
Lp(Ω;Y )

≤ R

∥∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥∥
Lp(Ω;X)

for all finite sequences (xn)Nn=1 in X and (Tn)Nn=1 in T , where (εn)Nn=1 is a Rademacher
sequence on a probability space (Ω,F ,P).

By the Kahane-Khintchine inequalities, the choice of p ∈ [1,∞) is arbitrary. For a
particular choice of p, we denote by Rp(T ) the infimum over all admissible R.

In the remainder of this section, we show R-boundedness of the family of conditional
expectation operators on a UMD+ space induced by a filtration. This is a result of
[Bou84, Bou86] extending the scalar case given by [Ste70, Theorem 8], but the proof
below is due to [FW01, Lemma 34].

Proposition 3.4.2 (Vector-valued Stein inequality). Let X be a UMD+ space and
fix p ∈ (1,∞). Let (S,A, µ) be a measure space with a σ-finite filtration (Fn)Nn=1 and
denote by E the family of conditional expectation operators {E [· | Fn]}Nn=1. Then, E
is R-bounded on Lp(S;X) with constant Rp(E) ≤ β+

p (X).

That is, for all finite sequences (fn)Nn=1 in Lp(S;X), we have∥∥∥∥∥
N∑

n=1

εnE[fn | Fn]

∥∥∥∥∥
Lp(S×Ω;X)

≤ β+
p (X)

∥∥∥∥∥
N∑

n=1

εnfn

∥∥∥∥∥
Lp(S×Ω;X)

,

where (εn)Nn=1 is a Rademacher sequence on a probability space (Ω,F ,P).
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Proof. Consider the family of sub-σ-algebras (G)2Nn=1 of A⊗F given by

G2n−1 = σ(Fn, ε0, . . . , εn−1), G2n = σ(Fn, ε0, . . . , εn)

for n = 1, . . . , N . Define F =
∑N

n=1 εnfn and consider the martingale (Fn)2Nn=1 given
by Fn = E[F | Gn]. By independence,

F2m−1 =
m−1∑
n=1

εnE[fn | Fm], F2m =
m∑

n=1

εnE[fn | Fm],

so that
dF2n = εnE[fn | Fn].

Let (ε̃n)2Nn=1 be another Rademacher sequence on another probability space (Ω̃, F̃ , P̃).
Then, ∥∥∥∥∥

N∑
n=1

εnE[fn | Fn]

∥∥∥∥∥
Lp(S×Ω;X)

=

∥∥∥∥∥
N∑

n=1

ε̃2ndF2n

∥∥∥∥∥
Lp(S×Ω×Ω̃;X)

≤

∥∥∥∥∥
2N∑
n=1

ε̃ndFn

∥∥∥∥∥
Lp(S×Ω×Ω̃;X)

≤ β+
p (X)∥F2N∥Lp(S×Ω;X)

≤ β+
p (X)

∥∥∥∥∥
N∑

n=1

εnfn

∥∥∥∥∥
Lp(S×Ω;X)

,

where the inequalities correspond to Kahane’s contraction principle, the UMD+ prop-
erty of X, and contractivity of the conditional expectation E [· | G2N ].

The R-boundedness of families of conditional expectation operators has far-reaching
applications even outside of the theory of martingales. For example, it implies that the
heat semigroup on Lp(Rd;X) for a UMD+ space X is also R-bounded with constant
β+
p (X). See [HLN16, Corollary 21] for the details. Similarly, [HvP08] shows that

the family of operators averaging over balls in Rd is R-bounded on Lp(Rd;X) with
constant linear in β+

p (X) if X is a UMD+ space. See [DHP03] and [KW04] for surveys
of the theory as well as some applications to harmonic analysis and parabolic partial
differential equations.

In this chapter, we defined the UMD, UMD+, and UMD− properties, then discussed
several constructions of such spaces as well as some canonical sequence and functions
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spaces which satisfy some, none, or all of the properties. We finished with a simple
example in which the UMD+ property is helpful for analysis. In the next section, we
will study the geometric consequences of each of the three properties.

53



Chapter 4

Geometry of Banach Spaces

The UMD and randomized UMD (UMD+ and UMD−) properties are only three of
many conditions that can be used to characterize the geometry of Banach spaces.
In this chapter, we summarize some of the most commonly encountered geometric
properties of Banach spaces and compare them to the randomized UMD properties.
These properties have far-reaching implications for the geometry of Banach spaces
even in settings without any clear connection to probability or martingales.

4.1 Reflexivity

For a Banach space X with bidual X∗∗, the canonical evaluation map J : X → X∗∗

is given by J(x)(x∗) = x∗(x) for all x∗ ∈ X∗. We call X reflexive if this map is a
homeomorphism. By the Hahn-Banach theorem, J is injective and preserves norms,
so it suffices to prove that J is surjective. As we will show, this is the case if X is a
UMD+ space.

UMD spaces were first shown to be reflexive in [Mau75, Ald79]. Using similar meth-
ods, [Gar90] shows that the UMD+ property is sufficient for a Banach space to be
reflexive. Both arguments rely on the following alternative characterization of reflex-
ivity of a Banach space due to [Jam64]. See [HvVW16, Theorem 4.3.2] for a recent
proof of the theorem in this form and its application to show that the UMD property
implies reflexivity, from which our proof is adapted.

Lemma 4.1.1 (James’s theorem). Let X be a Banach space. The following are
equivalent:
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(1) X is not reflexive.

(2) for some 0 < θ < 1
2
, there exist sequences (xn)n∈N in BX and (x∗

n)n∈N in BX∗

such that

x∗
i (xj) =

{
θ if i ≤ j

0 if i > j.

(3) for some θ > 0, there exists a bounded sequence (xn)n∈N in X such that for all
N ∈ N,

d(conv(xn)Nn=1, conv(xn)∞n=N+1) ≥ θ.

Armed with James’s theorem, we proceed to show that UMD+ spaces are reflexive
by constructing a martingale in any non-reflexive Banach space for which the UMD+

property would fail. The construction of this particular martingale is originally from
[Pis75], while the proof below using Pisier’s martingale is due to [Gar90].

Proposition 4.1.2. If X is a UMD+ space, then X is reflexive.

Proof. Suppose for the sake of contradiction that X is a UMD+ space which is not
reflexive. Fix p ∈ (1,∞) and N ∈ N. By James’s theorem, there exists 0 < θ < 1

2

and a sequence (xn)n∈N in BX such that d(An, Bn) ≥ 2θ for all n ∈ N, where

An = conv({x1, . . . , xn}), Bn = conv({xn+1, xn+2, . . . }).

Define the function fN : [0, 1) → X by

fN :=
2N∑
n=1

1[(n−1)2−N ,n2−N )xn,

which is measurable with respect to DN , where (Dn)Nn=1 is the dyadic filtration gen-
erated by the intervals INn = [(n− 1)2−N , n2−N) for n = 1, . . . , 2N . Then, define the
martingale (fn)Nn=1 by fn = E[fN | Dn]. On the interval Inj , fn almost everywhere
takes the value

ynj :=
1∣∣Inj ∣∣
∫
Inj

fN(t) dt = 2n−N

j2N−n∑
k=(j−1)2N−n+1

xk.

Therefore, ynj ∈ conv({x(j−1)2N−n+1, . . . , xj2N−n}). As a consequence of James’s theo-

rem, for distinct i, j = 1, . . . , 2n,
∥∥ynj ∥∥X ≤ 1 (hence ∥fn(t)∥X ≤ 1 almost everywhere)

and
∥∥yni − ynj

∥∥
X
≥ 2θ.
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As In−1
j = In2j−1 ∪ In2j, we can decompose yn−1

j = 1
2
(yn2j−1 + yn2j). Therefore, for almost

every t ∈ In2j−1,

∥dfn(t)∥X =

∥∥∥∥yn2j−1 −
1

2
(yn2j−1 + yn2j)

∥∥∥∥
X

=
1

2

∥∥yn2j−1 − yn2j
∥∥ ≥ θ

and for almost every t ∈ In2j,

∥dfn(t)∥X =

∥∥∥∥yn2j − 1

2
(yn2j−1 + yn2j)

∥∥∥∥ =
1

2

∥∥yn2j − yn2j−1

∥∥ ≥ θ.

Now, let (εn)Nn=1 be a Rademacher sequence on a probability space Ω. We can compute

θ|an| ≤ ∥andfn∥Lp([0,1);X)

= ∥anεndfn∥Lp(Ω×[0,1);X)

≤

∥∥∥∥∥
N∑

n=1

anεndfn

∥∥∥∥∥
Lp(Ω×[0,1);X)

≤ ∥a∥ℓ∞N

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(Ω×[0,1);X)

≤ β+
p (X)∥a∥ℓ∞N ∥fN∥Lp([0,1);X)

≤ β+
p (X)∥a∥ℓ∞N

where we use ∥dfn(t)∥X ≥ θ almost everywhere from above, Kahane’s contraction
principle, the UMD+ property of X, and finally that ∥fN(t)∥X ≤ 1 almost everywhere
also from above.

The computation above shows that the map J : a 7→
∑N

n=1 anεndfn is an isomorphic
embedding of ℓ∞N into Lp(Ω× [0, 1);X) with θ ≤ ∥J∥ ≤ β+

p (X). By Proposition 3.2.2,
it follows that β+

p (ℓ∞N ) ≤ 1
θ
β+
p (X). This holds for all N ∈ N, and β+

p (ℓ∞N ) → ∞ as
N → ∞ by Lemma 3.3.1, so β+

p (X) must be infinite and X must not be UMD+. This
is a contradiction, so we conclude that X must be reflexive.

Recall that ℓ1, ℓ∞, and c0 are not reflexive. The proposition above implies that they
are not UMD+ spaces, which confirms our conclusions in Examples 3.3.2 and 3.3.3.
The same proposition does not hold if UMD+ is replaced by UMD−: ℓ1 is a UMD−

space, but it is not reflexive.
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Actually, Proposition 4.1.2 can be strengthened using an existing result. In Subsection
3.2.4, we found that UMD+ is a super-property in that it is preserved under finite
representability. That is, if a Banach space Y is finitely representable in a UMD+

space X, then it is also UMD+. Using Proposition 4.1.2, it follows that Y is reflexive.
All together, we find that any Banach space Y which is finitely representable in a
UMD+ space X is reflexive, a property of X which we call super-reflexivity. This
gives the following corollary.

Corollary 4.1.3. If X is a UMD+ space, then X is super-reflexive.

Now that we have shown that the UMD+ property implies super-reflexivity, it is
natural to ask whether the converse holds (i.e. if UMD+ and super-reflexivity are
equivalent properties). The answer is no. In [Bou83], Bourgain provides an example
of a super-reflexive Banach lattice which is not UMD+. Garling adapts this example in
[Gar90, Theorem 4] to construct a super-reflexive Banach lattice which is not UMD−

either. In [Qiu12], Qiu provides a considerably simpler example of a non-UMD+

super-reflexive Banach lattice.

4.2 K-convexity

The next property that we consider is K-convexity. This notion was first introduced
by [MP76] in order to obtain duality results for cotype similar to those of type (see the
succeeding section for the details). The following definition characterizes K-convex
spaces as those for which Rademacher projections are uniformly bounded. As we will
see, K-convexity follows from the UMD+ property.

Definition 4.2.1 (K-convex). A Banach space X is called K-convex if, for some
p ∈ (1,∞),

Kp(X) := sup
N≥1

∥RadN∥Lp(Ω;X)→Lp(Ω;X)

is finite, where

RadN(f) :=
N∑

n=1

rnE [rnf ]

for a real Rademacher sequence (rn)Nn=1 on a probability space (Ω,F ,P).

By the Kahane-Khintchine inequalities, the choice of p is arbitrary. That is, Kp(X)
is finite if and only if Kq(X) is finite for any p, q ∈ (1,∞). Of course, different choices
of p lead to different quantitative characterizations Kp(X) of K-convex spaces. Note
that the definition does not make use of any complex structure on X, so Kp(X) =
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Kp(XR) for a complex Banach space X. We could have replaced (rn)Nn=1 with a
complex Rademacher sequence to obtain the same property with different constants
Kp(X) (in which case Kp(X) ̸= Kp(XR)).

We begin with a reduction of the functions that need to be considered as inputs to
RadN from all of Lp(Ω;X) to a subset which is measurable with respect to a certain
sub-σ-algebra. This reduction will make it easier to show that K-convexity follows
from the UMD+ property because only the Rademacher projections of this smaller
class of functions need be considered.

Lemma 4.2.2. Let X be a Banach space and fix p ∈ (1,∞). Let (rn)Nn=1 be a real
Rademacher sequence on a probability space (Ω,F ,P) and consider the sub-σ-algebra
given by FN = σ(r1, . . . , rN). Then,∥∥RadN |Lp(Ω,FN ;X)

∥∥ = ∥RadN∥.

Proof. For any f ∈ Lp(Ω;X) and all n = 1, . . . N ,

E [rnf ] = E [E [rnf | FN ]] = E [rnE [f | FN ]] .

Therefore, RadN(f) = RadN(E [f | FN ]), so it suffices to consider only functions
which are measurable with respect to FN .

Now, for fixed N ∈ N, consider the probability space D = {−1, 1}N equipped with
the uniform probability measure µ. The coordinate mappings rn(ω) = ωn form a
real Rademacher sequence on (D,µ), using which we define the Walsh system (wα)α
by

wα =
∏
n∈α

rn

for any subset α ⊆ {1, . . . , N}. The following lemma allows us to represent every
f : D → X using the Walsh system.

Lemma 4.2.3. Let X be a Banach space and fix p ∈ (1,∞). For every function
f : D → X, we can write

f =
∑

α⊆{1,...,N}

wαE [wαf ] . (4.2.1)

Proof. It is immediate that the Walsh system (wα)α is orthonormal in the Hilbert
space L2(D). As L2(D) has dimension 2N and (wα)α has 2N elements, it follows that
(wα)α is an orthonormal basis for L2(D). The claim follows.
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Proposition 4.2.4. If X is a UMD+ space, then X is K-convex with Kp(X) ≤
CKβ

+
p (X) for all p ∈ (1,∞), where CR = 1 and CC = π

2
.

Proof. First, suppose that X is a real Banach space and fix N ∈ N. Using the lemmas,
it suffices to show that for any f ∈ Lp(D;X) of the form given in eq. (4.2.1),

∥RadN(f)∥Lp(D;X) ≤ β+
p (X)∥f∥Lp(D;X),

from which the claim follows.

For n = 1, . . . , N , define

An := {α ⊆ {1, . . . , N} | maxα = n}

and
dn :=

∑
α∈An

wαE [wαf ] ,

so that

f =
N∑

n=1

dn.

As (rn)Nn=1 is an independent Rademacher sequence, E [dn | σ(r1, . . . , rn−1)] = 0. It
follows that (dn)Nn=1 is a martingale difference sequence. Also, when m ̸= n, E [rnwα] =
0 for all α ∈ Am, which implies that E [rnf ] = E [rndn].

Let (r̃n)Nn=1 be another real Rademacher sequence on another probability space (Ω̃, F̃ , P̃).
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Then, for all f ∈ Lp(D;X),

E∥RadN(f)∥p = E

∥∥∥∥∥
N∑

n=1

rnE [rnf ]

∥∥∥∥∥
p

= Ẽ

∥∥∥∥∥
N∑

n=1

r̃nE [rndn]

∥∥∥∥∥
p

= Ẽ

∥∥∥∥∥E
N∑

n=1

r̃nrndn

∥∥∥∥∥
p

≤ ẼE

∥∥∥∥∥
N∑

n=1

r̃nrndn

∥∥∥∥∥
p

= EẼ

∥∥∥∥∥
N∑

n=1

r̃nrndn

∥∥∥∥∥
p

= EẼ

∥∥∥∥∥
N∑

n=1

r̃ndn

∥∥∥∥∥
p

≤ (β+
p (X))pE

∥∥∥∥∥
N∑

n=1

dn

∥∥∥∥∥
p

= (β+
p (X))pE∥f∥p,

where we use Fubini’s theorem, that (rn(ω)r̃n)Nn=1 is also a real Rademacher sequence

on Ω̃, and the UMD+ property. We conclude that

∥RadN∥Lp(D;X)→Lp(D;X) ≤ β+
p (X),

so X is K-convex and Kp(X) ≤ β+
p (X) as long as X is a real Banach space.

If X is a complex Banach space, then by Proposition 3.2.4,

Kp(X) = Kp(XR) ≤ β+
p (XR) ≤ π

2
β+
p (X),

so X is K-convex and Kp(X) ≤ π
2
β+
p (X) as desired.

Unlike the UMD+ property, the UMD− property does not necessarily imply K-
convexity. Example 3.3.3 gives that ℓ1 is a UMD− space, but it is not K-convex
(see [HvVW17, Corollary 7.1.10]).
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4.3 Type and cotype

Next, we study type and cotype, which quantitatively characterize the geometry of
Banach spaces using the behavior of Rademacher sums. The history of type and
cotype is described in [Mau03], while [PW98, AK06, HvVW17] are reference texts
with proofs of many of the theorems that we mention below. As with K-convexity, we
will see that type and cotype are linked (qualitatively, at least) with the randomized
UMD properties.

Definition 4.3.1 (Type and cotype). Let X be a Banach space, p ∈ [1, 2] and q ∈
[2,∞]. The space X is said to have type p if there exists a finite constant τ ≥ 0 such
that ∥∥∥∥∥

N∑
n=1

εnxn

∥∥∥∥∥
Lp(Ω;X)

≤ τ

(
N∑

n=1

∥xn∥pX

) 1
p

for all finite sequences (xn)Nn=1 in X, where (εn)Nn=1 is a Rademacher sequence on a
probability space Ω.

The space X is said to have cotype q if there exists a finite constant c ≥ 0 such that(
N∑

n=1

∥xn∥qX

) 1
q

≤ c

∥∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥∥
Lq(Ω;X)

under the same conditions.

We say that a Banach space has non-trivial type if it has type p for some p > 1 and
finite cotype if it has type q for some q < ∞. Note that type p implies type p̃ for
all p̃ ∈ [1, p] and cotype q implies cotype q̃ for all q̃ ∈ [q,∞]. The König-Tzafriri
theorem in [KT81] stipulates that non-trivial type implies finite cotype. However,
the converse does not hold: ℓ1 has cotype 2, but no non-trivial type (see [HvVW17,
Corollary 7.1.10]).

We denote by τp(X) and cq(X) the infima over all admissible τ and c, respectively.
By the Kahane-Khintchine inequalities, the exponents of the Rademacher sums can
be replaced by r and 1/r for arbitrary r ∈ [1,∞), except for the case q = ∞ (although
this does lead to different constants).

Kwapień’s theorem in [Kwa72] specifies that a Banach space is isomorphic to a Hilbert
space if and only if it has type 2 and cotype 2. For that reason, type and cotype can
be thought of as quantitative characterizations of how close or far a Banach space is
from being a Hilbert space.

61



We proved in Proposition 3.2.1 that all Hilbert spaces are UMD spaces, so randomized
UMD spaces can be considered as certain generalizations of Hilbert spaces. Therefore,
we might hope for the UMD+ and UMD− properties to imply at least non-trivial type
and finite cotype. Indeed, this holds for all but UMD− and non-trivial type.

Corollary 4.3.2. If X is a UMD+ space, then X has type p for some p > 1.

This is a simple corollary of Proposition 4.2.4 and the deep fact that K-convexity
is equivalent to non-trivial type, a result of [Pis82]. As with K-convexity, the same
is not true for UMD− because ℓ1 is a UMD− space per Example 3.3.3, but has no
non-trivial type.

Corollary 4.3.3. If X is a UMD+ space or a UMD− space, then X has cotype q for
some q < ∞.

Proof. For the first claim, if X is a UMD+ space, the previous corollary implies that
X has non-trivial type. Non-trivial type implies finite cotype (the König-Tzafriri
theorem of [KT81]), so it follows that X has finite cotype as well.

For the second claim, if X is a UMD− space, ℓ∞ is not finitely representable in it
(otherwise ℓ∞ would also be UMD−, but Example 3.3.2 gives that it is not). This is
equivalent to X having finite cotype by [MP76] (see [AK06, Theorem 11.1.4] for an
English proof of this fact).

There is also an interesting duality comparison between UMD+/UMD− and type/cotype.
In Proposition 3.2.5, we proved that the dual and predual of a UMD+ space are
UMD−. However, we also saw that this is not always reversible: ℓ1 is UMD−, but
neither its dual ℓ∞ nor its predual c0 are UMD+.

In much the same way, if X has type p, then X∗ has cotype p′, but this is also not
always reversible. The same example can be used: ℓ1 has cotype 2, but neither its
dual ℓ∞ nor its predual c0 have non-trivial type. See [HvVW17, Corollary 7.1.10,
Proposition 7.1.13] for proofs of these facts.

There is still a missing piece to this puzzle. As mentioned earlier, [KT81] shows
that non-trivial type implies finite cotype, but the converse does not always hold (ℓ1

has cotype 2 but no non-trivial type). We know that UMD− does not always imply
UMD+, but there is no counterpart to the König-Tzafriri theorem: it is an open
question whether UMD+ implies UMD− (and therefore UMD).
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4.4 Martingale type and cotype

Martingale type and cotype are variants of type and cotype which replace Rademacher
sequences with martingale difference sequences. First introduced in [Pis75], they have
many connections with convexity and smoothness properties of Banach spaces. Most
notably, a Banach space X has martingale type p if and only if it admits an equivalent
p-smooth norm and martingale cotype q if and only if it admits an equivalent q-convex
norm.

The definitions below show quite clearly that martingale type and cotype imply type
and cotype. We will see that the converse holds for UMD− and UMD+ spaces,
respectively.

Definition 4.4.1 (Martingale type and cotype). Let X be a Banach space, p ∈ [1, 2]
and q ∈ [2,∞]. The space X is said to have martingale type p if there exists a finite
constant τ ≥ 0 such that∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤ τ

(
N∑

n=1

∥dfn∥pLp(S;X)

) 1
p

for any Lp(S;X)-martingale difference sequence (dfn)Nn=1 on a σ-finite measure space
(S,A, µ).

The space X is said to have martingale cotype q if there exists a finite constant c ≥ 0
such that (

N∑
n=1

∥dfn∥qLq(S;X)

) 1
q

≤ c

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lq(S;X)

for any Lq(S;X)-martingale difference sequence (dfn)Nn=1 on a σ-finite measure space
(S,A, µ), with the left-hand side replaced with a supremum in the case q = ∞.

We denote by τmart
p (X) and cmart

q (X) the infima over all admissible τ and c, respec-
tively.

By choosing the martingale difference sequence dfn = εnxn for a Rademacher se-
quence (εn)Nn=1 and finite sequence (xn)Nn=1 in X, we find that martingale type p
(resp. martingale cotype q) implies type p (resp. cotype q), with

τp(X) ≤ τmart
p (X), cq(X) ≤ cmart

q (X).

According to the following proposition, the converses of these implications hold for
UMD− and UMD+ spaces, respectively.
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Proposition 4.4.2. Let p ∈ (1, 2] and q ∈ [2,∞).

(1) If a UMD− space X has type p, then X also has martingale type p with τmart
p (X) ≤

β−
p (X)τp(X).

(2) If a UMD+ space X has cotype q, then X also has martingale cotype q with
cmart
q (X) ≤ β+

q (X)cq(X).

Proof. For the first claim, using that X is a UMD− space, then that it has type p,
we obtain ∥∥∥∥∥

N∑
n=1

dfn

∥∥∥∥∥
Lp(S;X)

≤ β−
p (X)

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lp(S×Ω;X)

≤ β−
p (X)τp(X)

(
N∑

n=1

∥dfn∥pLp(S;X)

) 1
p

,

so X has martingale type p with τmart
p (X) ≤ β−

p (X)τp(X).

For the second claim, using that X has cotype q, then that it is a UMD+ space, we
obtain (

N∑
n=1

∥dfn∥qLq(S;X)

) 1
q

≤ cq(X)

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
Lq(S×Ω;X)

≤ cq(X)β+
q (X)

∥∥∥∥∥
N∑

n=1

dfn

∥∥∥∥∥
Lq(S;X)

,

so X has martingale cotype q with cmart
q (X) ≤ β+

q (X)cq(X).

Although martingale type and cotype can be strictly stronger properties than type and
cotype in the general Banach space setting, we have shown that they are equivalent
to their non-martingale counterparts for UMD− and UMD+ spaces. By the geometric
characterizations of martingale type and cotype from the beginning of this section,
this implies that a UMD− space X has type p if and only if it admits an equivalent p-
smooth norm and a UMD+ space X has cotype q if and only if it admits an equivalent
q-convex norm.

In this chapter, we demonstrated the connections tying the UMD+ and UMD− prop-
erties to reflexivity, K-convexity, type/cotype, and martingale type/cotype. In doing
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so, we have enabled the use of these geometric tools when performing analysis on
UMD+ or UMD− spaces. Far from being purely probabilistic characterizations of
Banach spaces, UMD+ and UMD− carry with them deep ideas about the geometry
of Banach spaces.
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Chapter 5

Conclusion

We began our study of UMD and randomized UMD spaces with simple definitions
characterizing the behavior of martingales and Rademacher difference sequences. Us-
ing the theory of martingales in Banach spaces which we built in Chapter 2 and armed
with several constructions and counterexamples of UMD and randomized UMD spaces
from Chapter 3, we were able to show in Chapter 4 that the purely probabilistic def-
initions of the UMD and randomized UMD properties have sweeping consequences
for the geometry and analytical properties of Banach spaces.

This connection linking the behavior of probabilistic objects such as Rademacher
sequences and martingales with the geometry of Banach spaces has been the central
theme of this paper. While we have mentioned several other sources which discuss
the analytical significance of the UMD property, none distinguish the UMD+ and
UMD− properties from their non-randomized counterpart. Our main contribution
has been the treatment of the randomized UMD properties independently of the
UMD property, especially with regards to their geometric consequences.

We finish our study with a brief discussion of three major open questions relating to
the randomized UMD properties.

The most important open question in the theory of the randomized UMD spaces
is whether the UMD+ property implies the UMD property. As we showed with
Example 3.3.3, there exist UMD− spaces which do not satisfy the UMD+ property, so
UMD is strictly stronger than UMD−. However, a similar result has not been shown
for UMD and UMD+. There are currently no known UMD+ spaces which are not
also UMD− (and thus UMD). This motivates the following question, first posed in
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[Gei99].

Open Problem 1. Does the UMD+ property imply the UMD property?

[Gei99, Corollary 5] presents some evidence which indicates that the UMD property
may be strictly stronger than UMD+: there is no general linear bound relating βp(X)
to β+

p (X). One strategy for answering this question might be to compare the UMD+

property with the boundedness of the Hilbert transform, which is equivalent with the
UMD property.

Another major open problem in the theory is whether showing that a Banach space
is UMD+ or UMD− requires checking only that the defining inequalities hold for
Walsh-Paley martingales. As we briefly mentioned in Section 3.1, one way to show
that the UMD property is consistent regardless of one’s choice of p ∈ (1,∞) is to
reduce to Walsh-Paley martingales, for which the independence from choice of p is
much easier to see. It is unknown whether the same reduction can be made for UMD+

or UMD−.

Open Problem 2. Are the UMD+ and UMD− properties implied by the correspond-
ing notions when one restricts the defining inequalities to Walsh-Paley martingales?

For the UMD− property, it is known that restricting the defining inequalities to Walsh-
Paley martingales does lead to a different constant (which is denoted by β−,∆

p (X)).
As described in [CV11], this holds even for X = R: it follows from [Bur91, Theorem
3.3] and [Hit94, Theorem 1.1] that β−,∆

p (R) ̸= β−
p (R) for certain p ∈ (1,∞).

We also mentioned in Section 3.1 the result of [Gar86] that

ℏp(X) ≤ β+
p (X)β−

p (X) ≤ βp(X)2,

where ℏp(X) ≡ ∥H∥Lp(R;X)→Lp(R;X) is the norm of the Hilbert transform on Lp(R;X).
It has long been conjectured that there is actually an estimate for the norm of the
Hilbert transform of the form

ℏp(X) ≤ cβp(X)

for some constant c > 0. This is the content of the following open problem.

Open Problem 3. Does there exist a linear bound of the form ℏp(X) ≤ cβp(X) or
even ℏp(X) ≤ cβ+

p (X)?

If the second inequality is true, then it would follow that the UMD and UMD+

properties are equivalent, using that the UMD property is equivalent to boundedness
of the Hilbert transform. This problem has been discussed in [Bur01, Section 3] and
[PW98, 8.8.2] with some partial results, but remains open.
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rielles indépendantes et propriétés géométriques des espaces de banach.
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